Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408312

RESUMO

The development of smart network infrastructure of the Internet of Things (IoT) faces the immense threat of sophisticated Distributed Denial-of-Services (DDoS) security attacks. The existing network security solutions of enterprise networks are significantly expensive and unscalable for IoT. The integration of recently developed Software Defined Networking (SDN) reduces a significant amount of computational overhead for IoT network devices and enables additional security measurements. At the prelude stage of SDN-enabled IoT network infrastructure, the sampling based security approach currently results in low accuracy and low DDoS attack detection. In this paper, we propose an Adaptive Machine Learning based SDN-enabled Distributed Denial-of-Services attacks Detection and Mitigation (AMLSDM) framework. The proposed AMLSDM framework develops an SDN-enabled security mechanism for IoT devices with the support of an adaptive machine learning classification model to achieve the successful detection and mitigation of DDoS attacks. The proposed framework utilizes machine learning algorithms in an adaptive multilayered feed-forwarding scheme to successfully detect the DDoS attacks by examining the static features of the inspected network traffic. In the proposed adaptive multilayered feed-forwarding framework, the first layer utilizes Support Vector Machine (SVM), Naive Bayes (NB), Random Forest (RF), k-Nearest Neighbor (kNN), and Logistic Regression (LR) classifiers to build a model for detecting DDoS attacks from the training and testing environment-specific datasets. The output of the first layer passes to an Ensemble Voting (EV) algorithm, which accumulates the performance of the first layer classifiers. In the third layer, the adaptive frameworks measures the real-time live network traffic to detect the DDoS attacks in the network traffic. The proposed framework utilizes a remote SDN controller to mitigate the detected DDoS attacks over Open Flow (OF) switches and reconfigures the network resources for legitimate network hosts. The experimental results show the better performance of the proposed framework as compared to existing state-of-the art solutions in terms of higher accuracy of DDoS detection and low false alarm rate.

2.
J Environ Manage ; 298: 113520, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391109

RESUMO

An innovative predictive model was employed to predict the key performance indicators of a full-scale wastewater treatment plant (WWTP) operated with an activated sludge treatment process. The data-driven model was obtained using data gathered from Cairo, Egypt. The proposed model consists of Random Vector Functional Link (RVFL) Networks incorporated with Manta Ray Foraging Optimizer (MRFO). RVFL is used as an advanced Artificial Neural Network (ANN) that avoids the common conventional ANN problems such as overfitting. MRFO is employed to determine the best RVFL parameters to maximize the prediction accuracy of the model. The developed MRFO-RVFL is compared with conventional RVFL to figure out the role of MRFO as an optimization tool to enhance model performance. Both models were trained and tested using experimental data measured during a long period of 222 days. This study aims to provide an accurate prediction of the most widely treated effluent indicators of BOD5 and TSS in the wastewater treatment plants. In this study, ten well-known influent wastewater parameters, BOD5, TSS, and VSS, influent flow rate, pH, ambient temperature, F/M ratio, SRT, WAS, and RAS, the output BOD5 and TSS were modeled and predicted using the integrated MRFO-RVFL algorithms and compared with the standalone RVFL model. The performance of the models was evaluated using different assessment measures such as R2, RMSE, and others. The obtained results of R2 and RMSE for the MRFO-RVFL model were 0.924 and 3.528 for BOD5 and 0.917 and 6.153 for TSS, which were much better than the results of conventional RVFL with 0.840 and 6.207 for BOD5 and 0.717 and 10.05 for TSS. Based on the obtained results, the selective model (MRFO-RVFL) exhibited a higher performance and validity to predict the TSS and optimal BOD5.


Assuntos
Esgotos , Purificação da Água , Algoritmos , Redes Neurais de Computação , Eliminação de Resíduos Líquidos , Águas Residuárias
3.
Entropy (Basel) ; 23(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34441205

RESUMO

Human activity recognition (HAR) plays a vital role in different real-world applications such as in tracking elderly activities for elderly care services, in assisted living environments, smart home interactions, healthcare monitoring applications, electronic games, and various human-computer interaction (HCI) applications, and is an essential part of the Internet of Healthcare Things (IoHT) services. However, the high dimensionality of the collected data from these applications has the largest influence on the quality of the HAR model. Therefore, in this paper, we propose an efficient HAR system using a lightweight feature selection (FS) method to enhance the HAR classification process. The developed FS method, called GBOGWO, aims to improve the performance of the Gradient-based optimizer (GBO) algorithm by using the operators of the grey wolf optimizer (GWO). First, GBOGWO is used to select the appropriate features; then, the support vector machine (SVM) is used to classify the activities. To assess the performance of GBOGWO, extensive experiments using well-known UCI-HAR and WISDM datasets were conducted. Overall outcomes show that GBOGWO improved the classification accuracy with an average accuracy of 98%.

4.
Appl Intell (Dordr) ; 51(4): 2353-2376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764558

RESUMO

The lightning search algorithm (LSA) is a novel meta-heuristic optimization method, which is proposed in 2015 to solve constraint optimization problems. This paper presents a comprehensive survey of the applications, variants, and results of the so-called LSA. In LSA, the best-obtained solution is defined to improve the effectiveness of the fitness function through the optimization process by finding the minimum or maximum costs to solve a specific problem. Meta-heuristics have grown the focus of researches in the optimization domain, because of the foundation of decision-making and assessment in addressing various optimization problems. A review of LSA variants is displayed in this paper, such as the basic, binary, modification, hybridization, improved, and others. Moreover, the classes of the LSA's applications include the benchmark functions, machine learning applications, network applications, engineering applications, and others. Finally, the results of the LSA is compared with other optimization algorithms published in the literature. Presenting a survey and reviewing the LSA applications is the chief aim of this survey paper.

5.
Appl Soft Comput ; 96: 106683, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32901204

RESUMO

SARS-CoV-2 (COVID-19) virus is a havoc pandemic that infects millions of people over the world and thousands of infected cases dead. So, it is vital to propose new intelligent data analysis tools and enhance the existed ones to aid scientists in analyzing the COVID-19 virus. Fragmented Local Aligner Technique (FLAT) is a data analysis tool that is used for detecting the longest common consecutive subsequence (LCCS) between a pair of biological data sequences. FLAT is an aligner tool that can be used to find the LCCS between COVID-19 virus and other viruses to help in other biochemistry and biological operations. In this study, the enhancement of FLAT based on modified Ions Motion Optimization (IMO) is developed to produce acceptable LCCS with efficient performance in a reasonable time. The proposed method was tested to find the LCCS between Orflab poly-protein and surface glycoprotein of COVID-19 and other viruses. The experimental results demonstrate that the proposed model succeeded in producing the best LCCS against other algorithms using real LCCS measured by the SW algorithm as a reference.

6.
Sci Rep ; 14(1): 25627, 2024 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-39465262

RESUMO

Bone scintigraphy is recognized as an efficient diagnostic method for whole-body screening for bone metastases. At the moment, whole-body bone scan image analysis is primarily dependent on manual reading by nuclear medicine doctors. However, manual analysis needs substantial experience and is both stressful and time-consuming. To address the aforementioned issues, this work proposed a machine-learning technique that uses phases to detect Bone scintigraphy. The first phase in the proposed model is the feature extraction and it was conducted based on integrating the Mobile Vision Transformer (MobileViT) model in our framework to capture highly complex representations from raw medical imagery using two primary components including ViT and lightweight CNN featuring a limited number of parameters. In addition, the second phase is named feature selection, and it is dependent on the Arithmetic Optimization Algorithm (AOA) being used to improve the Growth Optimizer (GO). We evaluate the performance of the proposed FS model, named GOAOA using a set of 18 UCI datasets. Additionally, the applicability of Bone scintigraphy for real-world application is evaluated using 2800 bone scan images (1400 normal and 1400 abnormal). The results and statistical analysis revealed that the proposed GOAOA algorithm as an FS technique outperforms the other FS algorithms employed in this study.


Assuntos
Neoplasias Ósseas , Osso e Ossos , Aprendizado Profundo , Cintilografia , Humanos , Cintilografia/métodos , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Osso e Ossos/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
7.
PLoS One ; 18(1): e0280006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36595557

RESUMO

Monkey king evolution (MKE) is a population-based differential evolutionary algorithm in which the single evolution strategy and the control parameter affect the convergence and the balance between exploration and exploitation. Since evolution strategies have a considerable impact on the performance of algorithms, collaborating multiple strategies can significantly enhance the abilities of algorithms. This is our motivation to propose a multi-trial vector-based monkey king evolution algorithm named MMKE. It introduces novel best-history trial vector producer (BTVP) and random trial vector producer (RTVP) that can effectively collaborate with canonical MKE (MKE-TVP) using a multi-trial vector approach to tackle various real-world optimization problems with diverse challenges. It is expected that the proposed MMKE can improve the global search capability, strike a balance between exploration and exploitation, and prevent the original MKE algorithm from converging prematurely during the optimization process. The performance of the MMKE was assessed using CEC 2018 test functions, and the results were compared with eight metaheuristic algorithms. As a result of the experiments, it is demonstrated that the MMKE algorithm is capable of producing competitive and superior results in terms of accuracy and convergence rate in comparison to comparative algorithms. Additionally, the Friedman test was used to examine the gained experimental results statistically, proving that MMKE is significantly superior to comparative algorithms. Furthermore, four real-world engineering design problems and the optimal power flow (OPF) problem for the IEEE 30-bus system are optimized to demonstrate MMKE's real applicability. The results showed that MMKE can effectively handle the difficulties associated with engineering problems and is able to solve single and multi-objective OPF problems with better solutions than comparative algorithms.


Assuntos
Algoritmos , Engenharia , Simulação por Computador
8.
Diagnostics (Basel) ; 13(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36899978

RESUMO

As day-to-day-generated data become massive in the 6G-enabled Internet of medical things (IoMT), the process of medical diagnosis becomes critical in the healthcare system. This paper presents a framework incorporated into the 6G-enabled IoMT to improve prediction accuracy and provide a real-time medical diagnosis. The proposed framework integrates deep learning and optimization techniques to render accurate and precise results. The medical computed tomography images are preprocessed and fed into an efficient neural network designed for learning image representations and converting each image to a feature vector. The extracted features from each image are then learned using a MobileNetV3 architecture. Furthermore, we enhanced the performance of the arithmetic optimization algorithm (AOA) based on the hunger games search (HGS). In the developed method, named AOAHG, the operators of the HGS are applied to enhance the AOA's exploitation ability while allocating the feasible region. The developed AOAG selects the most relevant features and ensures the overall model classification improvement. To assess the validity of our framework, we conducted evaluation experiments on four datasets, including ISIC-2016 and PH2 for skin cancer detection, white blood cell (WBC) detection, and optical coherence tomography (OCT) classification, using different evaluation metrics. The framework showed remarkable performance compared to currently existing methods in the literature. In addition, the developed AOAHG provided results better than other FS approaches according to the obtained accuracy, precision, recall, and F1-score as performance measures. For example, AOAHG had 87.30%, 96.40%, 88.60%, and 99.69% for the ISIC, PH2, WBC, and OCT datasets, respectively.

9.
Environ Sci Pollut Res Int ; 30(12): 33780-33794, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36495438

RESUMO

A sustainable environment by decreasing fossil fuel utilization and anthropogenic greenhouse gases is a globally main goal due to climate change and serious air pollution. Carbon dioxide (CO2) is a heat-trapping (greenhouse) that is released into the earth's atmosphere from natural processes, such as volcanic respiration and eruptions, as well as human activities, such as burning fossil fuels and deforestation. Due to this fact, underground carbon storage (UCS) is a promising technology to cut carbon emissions. However, there are some barriers to prevent UCS from applying globally. One of them is evaluating the feasibility of storage projects. Thus, the prediction accuracy of CO2 storage efficiencies may promote the attention of the community for UCS. In this study, we utilize the recent advances of swarm intelligence to develop a hybrid algorithm called AOSMA, employed to train the long short-term memory (LSTM). The developed swarm intelligence method (AOSMA) is an enhanced Aquila optimizer (AO) using the search mechanism of the slime mould algorithm (SMA). It is used to boost the prediction capability of the LSTM by optimizing its parameters. We considered two CO2 trapping indices, called residual trapping index (RTI) and solubility trapping index (STI). The evaluation experiments have shown that the AOSMA achieved significant results compared to the original AO and SMA and several swarm intelligence and optimization algorithms. The developed smart tools could use as a game changer to provide fast and accurate storage efficiency for projects that have similar parameters falling within the range of the database.


Assuntos
Poluição do Ar , Água Subterrânea , Humanos , Dióxido de Carbono/análise , Memória de Curto Prazo , Poluição do Ar/prevenção & controle , Combustíveis Fósseis
10.
Diagnostics (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174970

RESUMO

Recently, pre-trained deep learning (DL) models have been employed to tackle and enhance the performance on many tasks such as skin cancer detection instead of training models from scratch. However, the existing systems are unable to attain substantial levels of accuracy. Therefore, we propose, in this paper, a robust skin cancer detection framework for to improve the accuracy by extracting and learning relevant image representations using a MobileNetV3 architecture. Thereafter, the extracted features are used as input to a modified Hunger Games Search (HGS) based on Particle Swarm Optimization (PSO) and Dynamic-Opposite Learning (DOLHGS). This modification is used as a novel feature selection to alloacte the most relevant feature to maximize the model's performance. For evaluation of the efficiency of the developed DOLHGS, the ISIC-2016 dataset and the PH2 dataset were employed, including two and three categories, respectively. The proposed model has accuracy 88.19% on the ISIC-2016 dataset and 96.43% on PH2. Based on the experimental results, the proposed approach showed more accurate and efficient performance in skin cancer detection than other well-known and popular algorithms in terms of classification accuracy and optimized features.

11.
Neural Comput Appl ; 35(4): 3307-3324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36245794

RESUMO

Feature selection techniques are considered one of the most important preprocessing steps, which has the most significant influence on the performance of data analysis and decision making. These FS techniques aim to achieve several objectives (such as reducing classification error and minimizing the number of features) at the same time to increase the classification rate. FS based on Metaheuristic (MH) is considered one of the most promising techniques to improve the classification process. This paper presents a modified method of the Slime mould algorithm depending on the Marine Predators Algorithm (MPA) operators as a local search strategy, which leads to increasing the convergence rate of the developed method, named SMAMPA and avoiding the attraction to local optima. The efficiency of SMAMPA is evaluated using twenty datasets and compared its results with the state-of-the-art FS methods. In addition, the applicability of SMAMPA to work with real-world problems is evaluated by using it as a quantitative structure-activity relationship (QSAR) model. The obtained results show the high ability of the developed SMAMPA method to reduce the dimension of the tested datasets by increasing the prediction rate. In addition, it provides results better than other FS techniques in terms of performance metrics.

12.
Comput Biol Med ; 141: 105152, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952338

RESUMO

This paper proposes a binary version of Horse herd Optimization Algorithm (HOA) to tackle Feature Selection (FS) problems. This algorithm mimics the conduct of a pack of horses when they are trying to survive. To build a Binary version of HOA, or referred to as BHOA, twofold of adjustments were made: i) Three transfer functions, namely S-shape, V-shape and U-shape, are utilized to transform the continues domain into a binary one. Four configurations of each transfer function are also well studied to yield four alternatives. ii) Three crossover operators: one-point, two-point and uniform are also suggested to ensure the efficiency of the proposed method for FS domain. The performance of the proposed fifteen BHOA versions is examined using 24 real-world FS datasets. A set of six metric measures was used to evaluate the outcome of the optimization methods: accuracy, number of features selected, fitness values, sensitivity, specificity and computational time. The best-formed version of the proposed versions is BHOA with S-shape and one-point crossover. The comparative evaluation was also accomplished against 21 state-of-the-art methods. The proposed method is able to find very competitive results where some of them are the best-recorded. Due to the viability of the proposed method, it can be further considered in other areas of machine learning.


Assuntos
Algoritmos , Aprendizado de Máquina , Animais , Cavalos
13.
Multimed Tools Appl ; 81(12): 16707-16742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261554

RESUMO

Pixel rating is considered one of the commonly used critical factors in digital image processing that depends on intensity. It is used to determine the optimal image segmentation threshold. In recent years, the optimum threshold has been selected with great interest due to its many applications. Several methods have been used to find the optimum threshold, including the Otsu and Kapur methods. These methods are appropriate and easy to implement to define a single or bi-level threshold. However, when they are extended to multiple levels, they will cause some problems, such as long time-consuming, the high computational cost, and the needed improvement in their accuracy. To avoid these problems and determine the optimal multilevel image segmentation threshold, we proposed a hybrid Marine Predators Algorithm (MPA) with Salp Swarm Algorithm (SSA) to determine the optimal multilevel threshold image segmentation MPASSA. The obtained solutions of the proposed method are represented using the image histogram. Several standard evaluation measures, such as (the fitness function, time consumer, Peak Signal-to-Noise Ratio, Structural Similarity Index, etc.…) are employed to evaluate the proposed segmentation method's effectiveness. Several benchmark images are used to validate the proposed algorithm's performance (MPASSA). The results showed that the proposed MPASSA got better results than other well-known optimization algorithms published in the literature.

14.
Biosensors (Basel) ; 12(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36290958

RESUMO

In this paper, we study the applications of metaheuristics (MH) optimization algorithms in human activity recognition (HAR) and fall detection based on sensor data. It is known that MH algorithms have been utilized in complex engineering and optimization problems, including feature selection (FS). Thus, in this regard, this paper used nine MH algorithms as FS methods to boost the classification accuracy of the HAR and fall detection applications. The applied MH were the Aquila optimizer (AO), arithmetic optimization algorithm (AOA), marine predators algorithm (MPA), artificial bee colony (ABC) algorithm, genetic algorithm (GA), slime mold algorithm (SMA), grey wolf optimizer (GWO), whale optimization algorithm (WOA), and particle swarm optimization algorithm (PSO). First, we applied efficient prepossessing and segmentation methods to reveal the motion patterns and reduce the time complexities. Second, we developed a light feature extraction technique using advanced deep learning approaches. The developed model was ResRNN and was composed of several building blocks from deep learning networks including convolution neural networks (CNN), residual networks, and bidirectional recurrent neural networks (BiRNN). Third, we applied the mentioned MH algorithms to select the optimal features and boost classification accuracy. Finally, the support vector machine and random forest classifiers were employed to classify each activity in the case of multi-classification and to detect fall and non-fall actions in the case of binary classification. We used seven different and complex datasets for the multi-classification case: the PAMMP2, Sis-Fall, UniMiB SHAR, OPPORTUNITY, WISDM, UCI-HAR, and KU-HAR datasets. In addition, we used the Sis-Fall dataset for the binary classification (fall detection). We compared the results of the nine MH optimization methods using different performance indicators. We concluded that MH optimization algorithms had promising performance in HAR and fall detection applications.


Assuntos
Acidentes por Quedas , Dispositivos Eletrônicos Vestíveis , Humanos , Redes Neurais de Computação , Algoritmos , Atividades Humanas
15.
Comput Intell Neurosci ; 2022: 9112634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875781

RESUMO

The Internet of Medical Things (IoMT) has dramatically benefited medical professionals that patients and physicians can access from all regions. Although the automatic detection and prediction of diseases such as melanoma and leukemia is still being investigated and studied in IoMT, existing approaches are not able to achieve a high degree of efficiency. Thus, with a new approach that provides better results, patients would access the adequate treatments earlier and the death rate would be reduced. Therefore, this paper introduces an IoMT proposal for medical images' classification that may be used anywhere, i.e., it is an ubiquitous approach. It was designed in two stages: first, we employ a transfer learning (TL)-based method for feature extraction, which is carried out using MobileNetV3; second, we use the chaos game optimization (CGO) for feature selection, with the aim of excluding unnecessary features and improving the performance, which is key in IoMT. Our methodology was evaluated using ISIC-2016, PH2, and Blood-Cell datasets. The experimental results indicated that the proposed approach obtained an accuracy of 88.39% on ISIC-2016, 97.52% on PH2, and 88.79% on Blood-cell datsets. Moreover, our approach had successful performances for the metrics employed compared to other existing methods.


Assuntos
Melanoma , Neoplasias Cutâneas , Algoritmos , Humanos , Internet , Aprendizado de Máquina , Neoplasias Cutâneas/diagnóstico
16.
Comput Intell Neurosci ; 2022: 2728866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36039344

RESUMO

Coronavirus disease (COVID-19) has created an unprecedented devastation and the loss of millions of lives globally. Contagious nature and fatalities invariably pose challenges to physicians and healthcare support systems. Clinical diagnostic evaluation using reverse transcription-polymerase chain reaction and other approaches are currently in use. The Chest X-ray (CXR) and CT images were effectively utilized in screening purposes that could provide relevant data on localized regions affected by the infection. A step towards automated screening and diagnosis using CXR and CT could be of considerable importance in these turbulent times. The main objective is to probe a simple threshold-based segmentation approach to identify possible infection regions in CXR images and investigate intensity-based, wavelet transform (WT)-based, and Laws based texture features with statistical measures. Further feature selection strategy using Random Forest (RF) then selected features used to create Machine Learning (ML) representation with Support Vector Machine (SVM) and a Random Forest (RF) to make different COVID-19 from viral pneumonia (VP). The results obtained clearly indicate that the intensity and WT-based features vary in the two pathologies that are better differentiated with the combined features trained using SVM and RF classifiers. Classifier performance measures like an Area Under the Curve (AUC) of 0.97 and by and large classification accuracy of 0.9 using the RF model clearly indicate that the methodology implemented is useful in characterizing COVID-19 and Viral Pneumonia.


Assuntos
COVID-19 , Pneumonia Viral , COVID-19/diagnóstico , Humanos , Aprendizado de Máquina , Pneumonia Viral/diagnóstico , Máquina de Vetores de Suporte , Tomografia Computadorizada por Raios X/métodos
17.
Process Saf Environ Prot ; 149: 223-233, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33162687

RESUMO

COVID-19 outbreak has become a global pandemic that affected more than 200 countries. Predicting the epidemiological behavior of this outbreak has a vital role to prevent its spreading. In this study, long short-term memory (LSTM) network as a robust deep learning model is proposed to forecast the number of total confirmed cases, total recovered cases, and total deaths in Saudi Arabia. The model was trained using the official reported data. The optimal values of the model's parameters that maximize the forecasting accuracy were determined. The forecasting accuracy of the model was assessed using seven statistical assessment criteria, namely, root mean square error (RMSE), coefficient of determination (R2), mean absolute error (MAE), efficiency coefficient (EC), overall index (OI), coefficient of variation (COV), and coefficient of residual mass (CRM). A reasonable forecasting accuracy was obtained. The forecasting accuracy of the suggested model is compared with two other models. The first is a statistical based model called autoregressive integrated moving average (ARIMA). The second is an artificial intelligence based model called nonlinear autoregressive artificial neural networks (NARANN). Finally, the proposed LSTM model was applied to forecast the total number of confirmed cases as well as deaths in six different countries; Brazil, India, Saudi Arabia, South Africa, Spain, and USA. These countries have different epidemic trends as they apply different polices and have different age structure, weather, and culture. The social distancing and protection measures applied in different countries are assumed to be maintained during the forecasting period. The obtained results may help policymakers to control the disease and to put strategic plans to organize Hajj and the closure periods of the schools and universities.

18.
Process Saf Environ Prot ; 149: 399-409, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33204052

RESUMO

COVID-19 is a new member of the Coronaviridae family that has serious effects on respiratory, gastrointestinal, and neurological systems. COVID-19 spreads quickly worldwide and affects more than 41.5 million persons (till 23 October 2020). It has a high hazard to the safety and health of people all over the world. COVID-19 has been declared as a global pandemic by the World Health Organization (WHO). Therefore, strict special policies and plans should be made to face this pandemic. Forecasting COVID-19 cases in hotspot regions is a critical issue, as it helps the policymakers to develop their future plans. In this paper, we propose a new short term forecasting model using an enhanced version of the adaptive neuro-fuzzy inference system (ANFIS). An improved marine predators algorithm (MPA), called chaotic MPA (CMPA), is applied to enhance the ANFIS and to avoid its shortcomings. More so, we compared the proposed CMPA with three artificial intelligence-based models include the original ANFIS, and two modified versions of ANFIS model using both of the original marine predators algorithm (MPA) and particle swarm optimization (PSO). The forecasting accuracy of the models was compared using different statistical assessment criteria. CMPA significantly outperformed all other investigated models.

19.
Sci Rep ; 10(1): 15364, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958781

RESUMO

Currently, we witness the severe spread of the pandemic of the new Corona virus, COVID-19, which causes dangerous symptoms to humans and animals, its complications may lead to death. Although convolutional neural networks (CNNs) is considered the current state-of-the-art image classification technique, it needs massive computational cost for deployment and training. In this paper, we propose an improved hybrid classification approach for COVID-19 images by combining the strengths of CNNs (using a powerful architecture called Inception) to extract features and a swarm-based feature selection algorithm (Marine Predators Algorithm) to select the most relevant features. A combination of fractional-order and marine predators algorithm (FO-MPA) is considered an integration among a robust tool in mathematics named fractional-order calculus (FO). The proposed approach was evaluated on two public COVID-19 X-ray datasets which achieves both high performance and reduction of computational complexity. The two datasets consist of X-ray COVID-19 images by international Cardiothoracic radiologist, researchers and others published on Kaggle. The proposed approach selected successfully 130 and 86 out of 51 K features extracted by inception from dataset 1 and dataset 2, while improving classification accuracy at the same time. The results are the best achieved on these datasets when compared to a set of recent feature selection algorithms. By achieving 98.7%, 98.2% and 99.6%, 99% of classification accuracy and F-Score for dataset 1 and dataset 2, respectively, the proposed approach outperforms several CNNs and all recent works on COVID-19 images.


Assuntos
Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/diagnóstico , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/diagnóstico , Algoritmos , Betacoronavirus , COVID-19 , Aprendizado Profundo , Humanos , Redes Neurais de Computação , Pandemias , SARS-CoV-2 , Raios X
20.
PLoS One ; 15(6): e0235187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589673

RESUMO

COVID-19 is a worldwide epidemic, as announced by the World Health Organization (WHO) in March 2020. Machine learning (ML) methods can play vital roles in identifying COVID-19 patients by visually analyzing their chest x-ray images. In this paper, a new ML-method proposed to classify the chest x-ray images into two classes, COVID-19 patient or non-COVID-19 person. The features extracted from the chest x-ray images using new Fractional Multichannel Exponent Moments (FrMEMs). A parallel multi-core computational framework utilized to accelerate the computational process. Then, a modified Manta-Ray Foraging Optimization based on differential evolution used to select the most significant features. The proposed method evaluated using two COVID-19 x-ray datasets. The proposed method achieved accuracy rates of 96.09% and 98.09% for the first and second datasets, respectively.


Assuntos
Infecções por Coronavirus/diagnóstico por imagem , Aprendizado de Máquina , Pneumonia Viral/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Betacoronavirus , COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Radiografia Torácica , SARS-CoV-2 , Tórax/diagnóstico por imagem , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA