Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 24(13): e202300159, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36943393

RESUMO

Although rarely used in nature, fluorine has emerged as an important elemental ingredient in the design of proteins with altered folding, stability, oligomerization propensities, and bioactivity. Adding to the molecular modification toolbox, here we report the ability of privileged perfluorinated amphiphiles to noncovalently decorate proteins to alter their conformational plasticity and potentiate their dispersion into fluorous phases. Employing a complementary suite of biophysical, in-silico and in-vitro approaches, we establish structure-activity relationships defining these phenomena and investigate their impact on protein structural dynamics and intracellular trafficking. Notably, we show that the lead compound, perfluorononanoic acid, is 106 times more potent in inducing non-native protein secondary structure in select proteins than is the well-known helix inducer trifluoroethanol, and also significantly enhances the cellular uptake of complexed proteins. These findings could advance the rational design of fluorinated proteins, inform on potential modes of toxicity for perfluoroalkyl substances, and guide the development of fluorine-modified biologics with desirable functional properties for drug discovery and delivery applications.


Assuntos
Flúor , Proteínas , Flúor/química , Proteínas/química , Estrutura Secundária de Proteína , Trifluoretanol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA