RESUMO
Integrated silicon plasmonic circuitry is becoming integral for communications and data processing. One key challenge in implementing such optical networks is the realization of optical sources on silicon platforms, due to silicon's indirect bandgap. Here, we present a silicon-based metal-encapsulated nanoplasmonic waveguide geometry that can mitigate this issue and efficiently generate light via third-harmonic generation (THG). Our waveguides are ideal for such applications, having strong power confinement and field enhancement, and an effective use of the nonlinear core area. This unique device was fabricated, and experimental results show efficient THG conversion efficiencies of η = 4.9 × 10-4, within a core footprint of only 0.24 µm2. Notably, this is the highest absolute silicon-based THG conversion efficiency presented to date. Furthermore, the nonlinear emission is not constrained by phase matching. These waveguides are envisioned to have crucial applications in signal generation within integrated nanoplasmonic circuits.
RESUMO
Plasmochromics, the interaction of plasmons with an electrochromic material, have spawned a new class of active plasmonic devices. By introducing electrochromic materials into the plasmon's dielectric environment, plasmons can be actively manipulated. We introduce inorganic WO3 and ion conducting LiNbO3 layers as the core materials in a solid-state plasmochromic waveguide (PCWG) to demonstrate light modulation in a nanoplasmonic waveguide. The PCWG takes advantage of the high plasmonic loss at the high field located at the WO3/Au interface, where the Li+ ions are intercalated into a thin WO3 plasmon modulating layer. Through careful PCWG design, the direction for ion diffusion and plasmon propagation are decoupled, leading to enhanced modulation depth and fast EC switching times. We show that at a bias voltage of 2.5 V, the fabricated PCWG modulator achieves modulation depths as high as 20 and 38 dB for 10 and 20 µm long devices, respectively.
RESUMO
Static plasmonic metal-insulator-nanohole (MIN) cavities have been shown to create high chromaticity spectral colors for display applications. While on-off switching of said devices has been demonstrated, introducing active control over the spectral color of a single cavity is an ongoing challenge. Electrochromic oxides such as tungsten oxide (WO3) offer the possibility to tune their refractive index (2.1-1.8) and extinction (0-0.5) upon ion insertion, allowing active control over resonance conditions for MIN based devices. In combination with the dynamic change in the WO3 layer, the utilization of a plasmonic superstructure allows creation of well-defined spectral reflection of the nanocavity. Here, we employ inorganic, electrochromic WO3 as the tunable dielectric in a MIN nanocavity, resulting in a theoretically achievable resonance wavelength modulation from 601 to 505 nm, while maintaining 35% of reflectance intensity. Experimental values for the spectral modulation result in a 64 nm shift of peak wavelength with high reproducibility and fast switching speed. Remarkably, the introduced device shows electrochemical stability over 100 switching cycles while most of the intercalated charge can be regained (91.1%), leading to low power consumption (5.6 mW/cm-2).
RESUMO
BACKGROUND AND OBJECTIVE: Laser-induced cell-cell surgical attachment using femtosecond laser pulses is reported. STUDY DESIGN/MATERIALS AND METHODS: We have demonstrated the ability to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser. To check that the cells did not go through a cell-fusion process, a fluorescent dye Calcein AM was used to verify that the fluorescent dye did not migrate from a dyed cell to a non-dyed cell. The mechanical integrity of the attached joint was assessed using an optical tweezer. RESULTS: Attachment of cells was performed without the induction of cell-cell fusion, with attachment efficiency of 95%, and while preserving the cells' viability. Cell-cell attachment was achieved by delivery of one to two trains of femtosecond laser pulses lasting 15 ms each. CONCLUSIONS: Laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane. The inner cell membrane remained intact during the attachment procedure, and isolation of the cells' cytoplasm from the surrounding medium was obtained. A strong physical attachment between the cells was obtained due to the bonding of the membranes' ionized phospholipid molecules and the formation of a joint cellular membrane at the connection point. The cellular attachment technique, femtosecond laser-induced cell-cell surgical attachment, can potentially provide a platform for the creation of engineered tissue and cell cultures.
Assuntos
Adesão Celular , Membrana Celular , Lasers de Estado Sólido , Engenharia Tecidual/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Engenharia Tecidual/instrumentaçãoRESUMO
Research regarding electrochromic (EC) materials, such materials that change their color upon application of an electrochemical stimulus, has been conducted for centuries. However, most recently, increasing efforts have been put into developing novel solutions to utilize these on-off switching materials in advanced nanoplasmonic and nanophotonic devices. Due to the significant change in dielectric properties of oxides such as WO3, NiO, Mn2O3 and conducting polymers like PEDOT:PSS and PANI, EC materials have transcended beyond simple smart window applications and are now found in plasmonic devices for full-color displays and enhanced modulation transmission and photonic devices with ultra-high on-off ratios and sensing abilities. Advancements in nanophotonic ECDs have further decreased EC switching speed by several orders of magnitude, allowing integration in real-time measurement and lab-on-chip applications. The EC nature of such nanoscale devices promises low energy consumption with low operating voltages paired with bistability and long lifetimes. We summarize these novel approaches to EC device design, lay out the current short comings and draw a path forward for future utilization.
RESUMO
Vanadates are a class of the most promising electrochromic materials for displays as their multicolor characteristics. However, the slow switching times and vanadate dissolution issues of recently reported vanadates significantly hinder their diverse practical applications. Herein, novel strategies are developed to design electrochemically stable vanadates having rapid switching times. We show that the interlayer spacing is greatly broadened by introducing sodium and lanthanum ions into V3O8 interlayers, which facilitates the transportation of cations and enhances the electrochemical kinetics. In addition, a hybrid Zn2+/Na+ electrolyte is designed to inhibit vanadate dissolution while significantly accelerating electrochemical kinetics. As a result, our electrochromic displays yield the most rapid switching times in comparison with any reported Zn-vanadate electrochromic displays. It is envisioned that stable vanadate-based electrochromic displays having video speed switching are appearing on the near horizon.
RESUMO
Since the discovery of electrochromism, the prospect of employing various electrochromic materials for smart window glass, variable reflectivity mirrors, and large-area displays has been the main drive for such an intriguing phenomenon. However, with advances in nanofabrication and the emergence of improved electrochromic materials offering reversible large changes in dielectric properties upon electrically induced redox reactions, the application strategies are starting to encompass the field of nanophotonics and nanoplasmonics. Herein, a novel strategy is proposed and demonstrated for offering both ultrahigh light modulation depth and high sensitivity ion detection in a single nanophotonic waveguiding platform. By using WO3 to ionically-drive dynamic light control via modulating the refractive index and the losses within the waveguide at ±1.5 V, ultrahigh optical modulation depth of 106, rapid response speed of <0.56 s, long cyclic life, and very sensitive Na+ ion detection ability in 1 mM-1 M concentration, are achieved within a volume of a few µm3. It is envisioned that our introduction of such a multifunctional electrochromic nanophotonic waveguide platform will stimulate and promote further efforts toward fundamental research on technologically promising on-chip integrated next-generation nanophotonic and nanoplasmonic devices for various niche applications.
RESUMO
The presented work demonstrates an innovative method to overcome electrolyte restrictions for electrodeposited tungsten oxide (WO3) electrochromic electrodes. By self-assembly of a phosphonic acid protection layer on top of the WO3 electrode, the cycle life of a WO3 electrode in aqueous electrolytes of potassium (KCl) and lithium chloride (LiCl) is dramatically enhanced. Based on the hydrophobic nature of the self-assembled monolayer (SAM), the modification allows for ion intercalation while it prevents etching of the electrode. The cycle life of a WO3 electrode in 1 M KCl increased from under 100 to over 1000 cycles between -0.6 and 0.6 V versus Ag/AgCl. Furthermore, the current-voltage cycling and simultaneous optical transparency measurements show that a WO3 electrode having a self-assembled monolayer of an n-dodecylphosphonic acid exhibits no degradation through detachment of the electrochromic material. Our results suggest that SAM modification of electrochromic oxides is a promising new route toward long lifetime electrochromic devices even in hostile electrolyte environments.
RESUMO
Transparency-switchable electrochromic devices (ECDs) offer promising applications, including variable optical attenuators, optical shutters, optical filters, and smart windows for energy-efficient buildings. However, the operation of conventional ECDs requires external voltages to trigger coloration/de-coloration processes, which makes them far from being an optimal energy-efficient technology. Electrochromic batteries that incorporate electro-optical modulation and electrical energy storage functionalities in a single platform, are highly-promising in the realization of energy-efficient ECDs. Herein, we report a novel Zn-Prussian blue (PB) system for aqueous electrochromic batteries. By utilizing different dual-ion electrolytes with various cations (e.g. Zn2+-K+ and Zn2+-Al3+), the Zn-PB electrochromic batteries demonstrate excellent performance. We show that the K+-Zn2+ dual-ion electrolyte in the Zn-PB configuration endows a rapid self-bleaching time (2.8 s), a high optical contrast (83% at 632.8 nm), and fast switching times (8.4 s/3 s for the bleaching/coloration processes). Remarkably, the aqueous electrochromic battery exhibits a compelling energy retrieval of 35.7 mW h m-2, where only 47.5 mW h m-2 is consumed during the round-trip coloration-bleaching process. These findings may open a new direction for developing advanced net-zero energy-consumption ECDs.
RESUMO
Newly born zinc-anode-based electrochromic devices (ZECDs), incorporating electrochromic and energy storage functions in a single transparent platform, represent the most promising technology for next-generation transparent electronics. As the existing ZECDs are limited by opaque zinc anodes, the key focus should be on the development of transparent zinc anodes. Here, the first demonstration of a flexible transparent zinc-mesh electrode is reported for a ZECD window that yields a remarkable electrochromic performance in an 80 cm2 device, including rapid switching times (3.6 and 2.5 s for the coloration and bleaching processes, respectively), a high optical contrast (67.2%), and an excellent coloration efficiency (131.5 cm2 C-1 ). It is also demonstrated that such ZECDs are perfectly suited for solar-charging smart windows as they inherently address the solar intermittency issue. These windows can be colored via solar charging during the day, and they can be bleached during the night by supplying electrical energy to electronic devices. The ZECD smart window platform can be scaled to a large area while retaining its excellent electrochromic characteristics. These findings represent a new technology for solar-charging windows and open new opportunities for the development of next-generation transparent batteries.
RESUMO
Electrochromic displays have been the subject of extensive research as a promising colour display technology. The current state-of-the-art inorganic multicolour electrochromic displays utilize nanocavity structures that sacrifice transparency and thus limit their diverse applications. Herein, we demonstrate a transparent inorganic multicolour display platform based on Zn-based electrochromic devices. These devices enable independent operation of top and bottom electrochromic electrodes, thus providing additional configuration flexibility of the devices through the utilization of dual electrochromic layers under the same or different colour states. Zn-sodium vanadium oxide (Zn-SVO) electrochromic displays were assembled by sandwiching Zn between two SVO electrodes, and they could be reversibly switched between multiple colours (orange, amber, yellow, brown, chartreuse and green) while preserving a high optical transparency. These Zn-SVO electrochromic displays represent the most colourful transparent inorganic-based electrochromic displays to date. In addition, the Zn-SVO electrochromic displays possess an open-circuit potential (OCP) of 1.56 V, which enables a self-colouration behaviour and compelling energy retrieval functionality. This study presents a new concept integrating high transparency and high energy efficiency for inorganic multicolour displays.
RESUMO
Batteries are used in every facet of human lives. Desirable battery architectures demand high capacity, rechargeability, rapid charging speed, and cycling stability, all within an environmentally friendly platform. Many applications are limited by opaque batteries; thus, new functionalities can be unlocked by introducing transparent battery architectures. This can be achieved by incorporating electrochromic and energy storage functions. Transparent electrochromic batteries enable new applications, including variable optical attenuators, optical switches, addressable displays, touch screen devices, and most importantly smart windows for energy-efficient buildings. However, this technology is in the incipient state due to limited electrochromic materials having satisfactory optical contrast and capacity. As such, triggering electrochromism via Zn2+ intercalation is advantageous: Zn is abundant, safe, easily processed in aqueous electrolytes and provides two electrons during redox reactions. Here, enhanced Zn2+ intercalation is demonstrated in Ti-substituted tungsten molybdenum oxide, yielding improved capacity and electrochromic performance. This technique is employed to engineer cathodes exhibiting an areal capacity of 260 mAh m-2 and high optical contrast (76%), utilized in the fabrication of aqueous Zn-ion electrochromic batteries. Remarkably, these batteries can be charged by external voltages and self-recharged by spontaneously extracting Zn2+ , providing a new technology for practical electrochromic devices.
RESUMO
Age-related macular degeneration (AMD) is a condition affecting the retina and is the leading cause of vision loss. Dry AMD is caused by the accumulation of lipid deposits called drusen, which form under the retina. This work demonstrates, for the first time, the removal of drusen-like deposits underneath ARPE-19 cell layers using femtosecond laser pulses. A novel cell culture model was created in response to the limited access to primary cell lines and the absence of animal models that recapitulate all aspects of AMD. In the cell culture model, deposits were identified with fluorescent stains specific to known deposit constituents. Trains of sub-10 femtosecond laser pulses from a Ti:Sapphire laser were used to successfully ablate the deposits without causing damage to surrounding cells. This drusen removal method can be used as a potential treatment for dry-stage AMD.
Assuntos
Lasers , Degeneração Macular/terapia , Drusas Retinianas/terapia , Epitélio Pigmentado da Retina/efeitos da radiação , Linhagem Celular , Humanos , Terapia a Laser/métodosRESUMO
Molybdenum oxides have been widely studied in recent years, owing to their electrochromic properties, electrocatalytic activities for hydrogen evolution reactions (HERs) and excellent energy storage performance. These characteristics strongly depend on the valence states of Mo in the oxides such as IV, V, and VI, which can be efficiently altered through oxygen deficiencies within the oxides. Here, we present a colloidal electrodeposition method to introduce oxygen vacancies in such Mo oxide films. We prepared uniform MoO x films and investigated their electrochemical characteristics under different valence states IV, V, and VI. In this paper, we demonstrate that MoO2+ x films, where Mo in valence states IV and V, can be used for high-performance supercapacitor electrodes. Due to their high conductivity, they exhibit an areal capacitance of 89 mF cm-2 at 1 mA cm-2 and negligible capacitance loss within 600 cycles. Additionally, we demonstrate that, in a complementary electrochromic device configuration, the introduction of an MoO2+ x counter electrode remarkably lowers the activation potential of WO3 from -2 to -0.5 V and achieves a fully bleached state at 0.5 V. These properties make the MoO2+ x film an ideal counter electrode to store ions for an electrochromic device. Furthermore, MoO3- y films, where Mo in the valence states V and VI, are obtained by annealing the electrodeposited MoO2+ x film under 200 °C for 24 h. Such films exhibit an excellent catalytic for the HER with an overpotential of 201 mV. Furthermore, we show that MoO3 films, where Mo at its highest oxidation state (VI), can be obtained via annealing the MoO2+ x film at 300 °C for 6 h, and the resulting films exhibit battery characteristics. Our research provides a new and facile strategy to fabricate substoichiometric molybdenum oxide nanofilms and reveals the effect of different valences on the electrochemical performance of molybdenum oxide films, which opens new doorways for future research in the electrochemical applications of transition metal oxides.
RESUMO
BACKGROUND: Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. RESULTS: An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. CONCLUSION: In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications.
Assuntos
Embrião não Mamífero/efeitos da radiação , Embrião não Mamífero/cirurgia , Desenvolvimento Embrionário/efeitos da radiação , Terapia a Laser/métodos , Microcirurgia/métodos , Peixe-Zebra/embriologia , Peixe-Zebra/cirurgia , Animais , LasersRESUMO
Two nodes are studied as means to perform selective optical-optical switching of four planar thin surface plasmon waveguides by interfering TEM(10), TEM(01), and TEM(00) light beams incident upon a node. One node uses a flat-apex pyramidal reflector to reflect the incident light toward the waveguides' ends. An alternative node is a simple square aperture, which couples surface plasmons through light diffraction at the aperture's edges. Numerical calculations predict switching contrast, coupling efficiencies, and cross-talk between waveguides. Individually turned-off waveguides are shown to have their coupled surface plasmons attenuated by at least -10 dB and up to -21 dB.
Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Óptica e Fotônica/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Telecomunicações/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de RadiaçãoRESUMO
Electrochromic devices (ECDs) have received increased attention for applications including optoelectronics, smart windows, and low-emission displays. However, it has been recognized that the ECDs with transition-metal oxide (TMO) electrodes possess a high charge transport barrier because of their poor electrical conductivity, which limits their electrochromic performance. In this work, we addressed this limitation by utilizing a conjugated polymer to fabricate an organic-inorganic nanocomposite film that decreases the charge transport barrier of typical TMO electrodes. Using a conventional spray-layer-by-layer (spray-LbL) deposition technique, we demonstrate an electrochromic film composed of porous layers of tungsten molybdenum oxide (W0.71Mo0.29O3) nanorods permeated with an interconnected conductive layer of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The introduction of PEDOT:PSS is shown to significantly reduce the charge transport barrier, allowing the nanocomposite W0.71Mo0.29O3/PEDOT:PSS electrode to exhibit significantly improved electrochromic switching kinetics compared with the deposited W0.71Mo0.29O3 films. Furthermore, the optical contrast of the nanocomposite electrode was observed to be superior to both pure PEDOT:PSS and W0.71Mo0.29O3 electrodes, with a performance that exceeded the linearly predicted contrast of combining the pure films by 23%. The enhanced performance of the PEDOT:PSS-intercalated porous W0.71Mo0.29O3 nanocomposite electrodes and the facile synthesis through a spray-LbL method demonstrate a viable strategy for preparing fast assembling high-performance nanocomposite electrodes for a wide variety of electrochemical devices.
RESUMO
This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.
RESUMO
Neuronal injury may cause an irreversible damage to cellular, organ and organism function. While preventing neural injury is ideal, it is not always possible. There are multiple etiologies for neuronal injury including trauma, infection, inflammation, immune mediated disorders, toxins and hereditary conditions. We describe a novel laser application, utilizing femtosecond laser pulses, in order to connect neuronal axon to neuronal soma. We were able to maintain cellular viability, and demonstrate that this technique is universal as it is applicable to multiple cell types and media.
Assuntos
Nanomedicina/métodos , Neurônios/citologia , Engenharia Tecidual/métodos , Animais , Linhagem Celular , Fenômenos Fisiológicos Celulares , Sobrevivência Celular , Lasers , CamundongosRESUMO
Recently, there has been increasing interest in the application of femtosecond (fs) laser pulses to the study of cells, tissues and embryos. This review explores the developments that have occurred within the last several years in the fields of cell and embryo nanosurgery. Each of the individual studies presented in this review clearly demonstrates the nondestructiveness of fs laser pulses, which are used to alter both cellular and subcellular sites within simple cells and more complicated multicompartmental embryos. The ability to manipulate these model systems noninvasively makes applied fs laser pulses an invaluable tool for developmental biologists, geneticists, cryobiologists, and zoologists. We are beginning to see the integration of this tool into life sciences, establishing its status among molecular and genetic cell manipulation methods. More importantly, several studies demonstrating the versatility of applied fs laser pulses have established new collaborations among physicists, engineers, and biologists with the common intent of solving biological problems.