Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 206: 111396, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039852

RESUMO

Salinity is a key worldwide ecological restriction to sustainable crop production and food security. Various methods were used for inducing salinity tolerance including biotechnological approaches or application of stress tolerance-inducing substances. Silicon supplementation has a decisive role in alleviating of salinity injury, however, the definite mechanisms behind stay scantily understood, and must be examined. The imperative roles of sodium metasilicate (Si, 100 ppm) application methods (foliar spraying at 100 mg/l; soil additive at 100 mg/kg soil; foliar spraying at 100 mg/l plus soil additive at 100 mg/kg soil), in improving growth and essential oil yield, maintaining water status, activating antioxidant system, and keeping ion homeostasis of salt affected-sweet basil (6000 mg NaCl/kg soil) were studied. Salinity induced a notable increase in oxidative biomarkers, coupled with higher osmolyte concentration and osmotic potential (OP) values, as well as increased superoxide dismutase and peroxidase activities. Alternatively, sweet basil growth, essential oil yield, and catalase activity were reduced under salinity. Furthermore, salinity aggravated ion imbalance, decreased photosynthetic pigment and disrupted the plants' water status. Silicon application drastically increased osmolyte accumulation associated with sustained water status, increased OP, and improved osmotic adjustment (OA) capacity. Additionally, Si application enhanced antioxidant aptitude associated with decreased oxidative biomarkers and improved growth, photosynthetic pigment, and essential oil yield. Greater outcomes were achieved with the foliar spraying method, compared with other application methods. Salinity stress evoked modification in protein assimilation capacity and possibly will withdraw protein biosynthesis and reduce total protein band number; however, Si application may adjust the expression of salinity inducible proteins. Foliar spraying of Si with or without soil additive accelerates the expression of peroxidase isozyme over salinized or control plants. Collectively, Si foliar spraying alleviated salinity-related injuries on sweet basil by maintaining water status, increasing osmolyte assimilation, improving OA, enhancing redox homeostasis, and antioxidant capacity.


Assuntos
Antioxidantes/metabolismo , Homeostase/efeitos dos fármacos , Ocimum basilicum/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Silicatos/farmacologia , Água/metabolismo , Ocimum basilicum/metabolismo , Óleos Voláteis/metabolismo , Oxirredução , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Solo/química , Superóxido Dismutase/metabolismo
2.
Int J Biol Macromol ; 269(Pt 2): 132095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710255

RESUMO

Plant viruses are the most abundant destructive agents that exist in every ecosystem, causing severe diseases in multiple crops worldwide. Currently, a major gap is present in computational biology determining plant viruses interaction with its host. We lay out a strategy to extract virus-host protein interactions using various protein binding and interface methods for Geminiviridae, a second largest virus family. Using this approach, transcriptional activator protein (TrAP/C2) encoded by Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Multan virus (CLCuMV) showed strong binding affinity with calmodulin-like (CML) protein of Gossypium hirsutum (Gh-CML11). Higher negative value for the change in Gibbs free energy between TrAP and Gh-CML11 indicated strong binding affinity. Consensus from gene ontology database and in-silico nuclear localization signal (NLS) tools identified subcellular localization of TrAP in the nucleus associated with Gh-CML11 for virus infection. Data based on interaction prediction and docking methods present evidences that full length and truncated C2 strongly binds with Gh-CML11. This computational data was further validated with molecular results collected from yeast two-hybrid, bimolecular fluorescence complementation system and pull down assay. In this work, we also show the outcomes of full length and truncated TrAP on plant machinery. This is a first extensive report to delineate a role of CML protein from cotton with begomoviruses encoded transcription activator protein.


Assuntos
Calmodulina , Biologia Computacional , Geminiviridae , Gossypium , Ligação Proteica , Proteínas Virais , Gossypium/virologia , Gossypium/genética , Biologia Computacional/métodos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Geminiviridae/genética , Calmodulina/metabolismo , Calmodulina/química , Calmodulina/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Simulação de Acoplamento Molecular , Interações Hospedeiro-Patógeno
3.
Sci Rep ; 14(1): 11809, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782928

RESUMO

The development of genotypes that can tolerate high levels of salt is crucial for the efficient use of salt-affected land and for enhancing crop productivity worldwide. Therefore, incorporating salinity tolerance is a critical trait that crops must possess. Salt resistance is a complex character, controlled by multiple genes both physiologically and genetically. To examine the genetic foundation of salt tolerance, we assessed 16 F1 hybrids and their eight parental lines under normal and salt stress (15 dS/m) conditions. Under salt stress conditions significant reduction was observed for plant height (PH), bolls/plant (NBP), boll weight (BW), seed cotton yield (SCY), lint% (LP), fiber length (FL), fiber strength (FS), potassium to sodium ratio (K+/Na+), potassium contents (K+), total soluble proteins (TSP), carotenoids (Car) and chlorophyll contents. Furthermore, the mean values for hydrogen peroxide (H2O2), sodium contents (Na+), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and fiber fineness (FF) were increased under salt stress. Moderate to high heritability and genetic advancement was observed for NBP, BW, LP, SCY, K+/Na+, SOD, CAT, POD, Car, TSP, FL, and FS. Mean performance and multivariate analysis of 24 cotton genotypes based on various agro-physiological and biochemical parameters suggested that the genotypes FBS-Falcon, Barani-333, JSQ-White Hold, Ghauri, along with crosses FBS-FALCON × JSQ-White Hold, FBG-222 × FBG-333, FBG-222 × Barani-222, and Barani-333 × FBG-333 achieved the maximum values for K+/Na+, K+, TSP, POD, Chlb, CAT, Car, LP, FS, FL, PH, NBP, BW, and SCY under salt stress and declared as salt resistant genotypes. The above-mentioned genotypes also showed relatively higher expression levels of Ghi-ERF-2D.6 and Ghi-ERF-7A.6 at 15 dS/m and proved the role of these ERF genes in salt tolerance in cotton. These findings suggest that these genotypes have the potential for the development of salt-tolerant cotton varieties with desirable fiber quality traits.


Assuntos
Gossypium , Tolerância ao Sal , Gossypium/genética , Gossypium/metabolismo , Gossypium/fisiologia , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genótipo , Potássio/metabolismo , Estresse Salino/genética , Fenótipo
4.
Artigo em Inglês | MEDLINE | ID: mdl-36612686

RESUMO

The issue of the agricultural cooperatives' sustainability in developing their businesses is gaining increasing prominence. Building partnerships between development actors and agricultural cooperatives has been considered an effective strategy for supporting financial capital and addressing sustainability issues collectively. Therefore, this study aimed to address the features and strengths of 33 partnerships established between the Beekeeping Cooperative Association in Al-Baha, Saudi Arabia, and other actors between 2016 and 2021. The analysis of the collaborations was based on six criteria: motivations, partnership planning, outputs, governance practices, outcomes, and sustainability of a partnership. Furthermore, we developed a weighted scoring model to control variable selection and submit the strength of each partnership. The findings indicated that most collaborations (45.5%) were signed with the private sector. Furthermore, the honey value chain development was the most frequent reason (69.7%) attracting the partners to engage in the partnerships. Some of the most critical environmental objectives targeted by the partnerships examined were enhancing bee habitat by the diversification of pasture species, management to increase the flowering period, and proper grazing management. All partners achieved their individual goals jointly in 54.5% of the partnerships analyzed. In terms of a partnership's strength, the findings also revealed that only three partnerships (9.1%) were characterized as strong partnerships. This study provides a better understanding of how agricultural cooperatives collaborate with other actors and a basis for assessing the strength of the partnerships. Such information is crucial for developing relevant policies to encourage cooperatives to engage in future sustainability partnerships.


Assuntos
Comércio , Animais , Arábia Saudita
5.
Plants (Basel) ; 9(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937748

RESUMO

Soil salinity is the main obstacle to worldwide sustainable productivity and food security. Zinc sulfate (Zn) and paclobutrazol (PBZ) as a cost-effective agent, has multiple biochemical functions in plant productivity. Meanwhile, their synergistic effects on inducing salt tolerance are indecisive and not often reported. A pot experiment was done for evaluating the defensive function of Zn (100 mg/L) or PBZ (200 mg/L) on salt (0, 50, 100 mM NaCl) affected pea plant growth, photosynthetic pigment, ions, antioxidant capacity, and yield. Salinity stress significantly reduces all growth and yield attributes of pea plants relative to nonsalinized treatment. This reduction was accompanied by a decline in chlorophyll, nitrogen, phosphorus, and potassium (K+), the ratio between K+ and sodium (Na+), as well as reduced glutathione (GSH) and glutathione reductase (GR). Alternatively, salinity increased Na+, carotenoid (CAR), proline (PRO), ascorbic acid (AsA), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) over nonsalinized treatment. Foliar spraying with Zn and PBZ under normal condition increased plant growth, nitrogen, phosphorus, potassium, K+/Na+ ratio, CAR, PRO, AsA, GSH, APX, GR, and yield and its quality, meanwhile decreased Na+ over nonsprayed plants. Application of Zn and PBZ counteracted the harmful effects of salinity on pea plants, by upregulating the antioxidant system, ion homeostasis, and improving chlorophyll biosynthesis that induced plant growth and yield components. In conclusion, Zn plus PBZ application at 30 and 45 days from sowing offset the injuries of salinity on pea plant growth and yield by upregulating the antioxidant capacity and increasing photosynthetic pigments.

6.
Saudi J Biol Sci ; 27(11): 3072-3078, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33100867

RESUMO

Global climate change and increased population caused significant depletion of freshwater especially in arid and semi-arid regions including Saudi Arabia. Saline water magnetization before irrigation may help in alleviating the adverse effects of salinity on plants. The current study aimed to examine the potential beneficial effects of water magnetization and soil amendments on growth, productivity, and survival of Calendula officinalis L. plants. Three types of water (tap water "control", well water, and magnetized well water) and two types of soil amendments (Fe2SO4 and peat moss) were examined. Our results showed that irrigating C. officinalis plants with saline well water (WW) adversely affected growth and flowering as compared to tap water (TW). However, plants irrigated with magnetized water (MW) showed significant enhancement in all the studied vegetative and flowering growth parameters as compared to those irrigated with WW. Furthermore, mineral contents and survival of C. officinalis plants irrigated with MW were higher than those irrigated with TW. Irrigation with MW significantly reduced levels of NA+ and Cl- ions in leaves of C. officinalis plants indicating the role of magnetization in alleviating harmful effects of salinity. The current study showed that water magnetization enhanced water quality and increased plant's ability to absorb water and nutrients. Further studies are needed to examine the possibility of irrigating food crops with magnetized water.

7.
Saudi J Biol Sci ; 24(1): 170-179, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28053588

RESUMO

Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil (Osmium basilicum) plants were grown in a non-saline soil (EC = 0.64 dS m-1), in low saline soil (EC = 5 dS m-1), and in a high saline soil (EC = 10 dS m-1). There were differences between arbuscular mycorrhizal (Glomus deserticola) colonized plants (+AMF) and non-colonized plants (-AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.

8.
Saudi J Biol Sci ; 19(2): 195-202, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23961179

RESUMO

Cut spikes of sweet pea (Lathyrus odoratus L.) were kept in 2% sucrose, 200 ppm 8-hydroxyquinoline sulfate (8-HQS), pulsing treatment with 200 ppm 8-HQS in combination with 2% sucrose for 12 h, pulsing the spikes with 0.2 mM silver thiosulfate (STS) for 1 h and pulsing with 0.2 mM STS for 1 h followed by 2% sucrose solution. Therefore, this study aimed to see their effects on keeping quality and vase-life of the cut flowers. A control (deionized water) and a standard preservative were also included in the experiment. The results showed that all treatments had improved the keeping quality and vase-life of the cut flowers comparing to control ones. Among all these treatments, the 8-HQS combined with 2% sucrose showed the best water uptake, water balance, percentage of maximum increase in fresh weight of the cut flower stems and vase-life which was extended up to 17 days. Moreover, this keeping solution retarded the chlorophyll as well as carbohydrate degradation. However, anthocyanin concentrations were increased by treatments with sucrose alone or STS followed by sucrose during the postharvest life. It has been concluded that 200 ppm 8-HQS combined with 2% sucrose solution has the potential to be used as a commercial cut flower preservative solution to delay flower senescence, enhance post harvest quality and prolong the vase-life of sweet pea cut flowers.

9.
Saudi J Biol Sci ; 18(1): 93-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23961109

RESUMO

The effect of an arbuscular mycorrhizal fungus "AMF" (Glomus constrictum Trappe) on growth, pigments, and phosphorous content of marigold (Tagetes erecta) plant grown under different levels of drought stress was investigated. The applied drought stress levels reduced growth vigor (i.e. plant height, shoot dry weight, flower diameter as well as its fresh and dry weights) of mycorrhizal and non-mycorrhizal plant as compared to control plant (non-drought stressed plant). The presence of mycorrhizal fungus, however, stimulated all growth parameters of the treated plant comparing to non-mycorrhizal treated plant. The photosynthetic pigments (carotene in flowers and chlorophylls a and b in leaves) were also stimulated by the mycorrhizal fungi of well-watered as well as of water-stressed plants. The total pigments of mycorrhizal plants grown under well-watered conditions were higher than those of non-mycorrhizal ones by 60%. In most cases, drought-stressed mycorrhizal plants were significantly better than those of the non-mycorrhizal plants. So, the overall results suggest that mycorrhizal fungal colonization affects host plant positively on growth, pigments, and phosphorous content, flower quality and thereby alleviates the stress imposed by water with holding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA