Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 10(39): eadn8117, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39321303

RESUMO

The rapid emergence and spread of multidrug-resistant bacterial pathogens require the development of antibacterial agents that are robustly effective while inducing no toxicity or resistance development. In this context, we designed and synthesized amphiphilic dendrimers as antibacterial candidates. We report the promising potent antibacterial activity shown by the amphiphilic dendrimer AD1b, composed of a long hydrophobic alkyl chain and a tertiary amine-terminated poly(amidoamine) dendron, against a panel of Gram-negative bacteria, including multidrug-resistant Escherichia coli and Acinetobacter baumannii. AD1b exhibited effective activity against drug-resistant bacterial infections in vivo. Mechanistic studies revealed that AD1b targeted the membrane phospholipids phosphatidylglycerol (PG) and cardiolipin (CL), leading to the disruption of the bacterial membrane and proton motive force, metabolic disturbance, leakage of cellular components, and, ultimately, cell death. Together, AD1b that specifically interacts with PG/CL in bacterial membranes supports the use of small amphiphilic dendrimers as a promising strategy to target drug-resistant bacterial pathogens and addresses the global antibiotic crisis.


Assuntos
Antibacterianos , Dendrímeros , Fosfatidilgliceróis , Dendrímeros/química , Dendrímeros/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fosfatidilgliceróis/química , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Animais , Acinetobacter baumannii/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo
2.
Gels ; 9(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36826294

RESUMO

In the present work, we report on the synthesis of light-triggered antibacterial hydrogels, based on xylan chains covalently bound to meso-tetra(4-carboxyphenyl)porphyrin (TCPP). Not only does TCPP act as a photosensitizer efficient against Gram-positive bacteria, but it also serves as a cross-linking gelator, enabling the simple and easy building of xylan conjugate hydrogels. The hydrogels were characterized by infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), along with swelling and rheological tests. The antimicrobial activity of the hydrogels was tested under visible light irradiation against two Gram-positive bacterial strains, Staphylococcus aureus and Bacillus cereus. The preliminary results showed an interesting activity on these bacteria, indicating that these hydrogels could be of great potential in the treatment of skin bacterial infections with this species by photodynamic antimicrobial chemotherapy (PACT).

3.
ACS Appl Bio Mater ; 4(9): 7204-7212, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006952

RESUMO

Photodynamic antimicrobial chemotherapy or PACT has been shown to be a promising antibacterial treatment that could overcome the challenge of multidrug-resistant bacteria. However, the use of most existing photosensitizers has been severely hampered by their significant self-quenching effect, poor water solubility, lack of selectivity against bacterial cells, and possible damage to the surrounding tissues. The use of hydrogels may overcome some of these limitations. We herein report a simple strategy to synthesize a cross-linked hydrogel from beech xylan. The hydrogel showed a high swelling ratio, up to 62, an interconnected porous structure, and good mechanical integrity, and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide (TMPyP) was chosen as a model of hydrophilic photosensitizer (PS) and was encapsulated inside the xylan-based hydrogel. TMPyP-loaded hydrogel prolonged release of PS up to 24 h with a cumulative amount that could reach 100%. TMPyP-loaded hydrogel showed a photocytotoxic effect against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus strains, and Bacillus cereus, while no cytotoxicity was observed in the dark.


Assuntos
Anti-Infecciosos , Hidrogéis , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Hidrogéis/química , Fármacos Fotossensibilizantes/farmacologia , Xilanos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA