Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Microbiol ; 26(2): e16574, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263628

RESUMO

Microbial blooms colonize the Greenland Ice Sheet bare ice surface during the ablation season and significantly reduce its albedo. On the ice surface, microbes are exposed to high levels of irradiance, freeze-thaw cycles, and low nutrient concentrations. It is well known that microorganisms secrete metabolites to maintain homeostasis, communicate with other microorganisms, and defend themselves. Yet, the exometabolome of supraglacial microbial blooms, dominated by the pigmented glacier ice algae Ancylonema alaskanum and Ancylonema nordenskiöldii, remains thus far unstudied. Here, we use a high-resolution mass spectrometry-based untargeted metabolomics workflow to identify metabolites in the exometabolome of microbial blooms on the surface of the southern tip of the Greenland Ice Sheet. Samples were collected every 6 h across two diurnal cycles at 5 replicate sampling sites with high similarity in community composition, in terms of orders and phyla present. Time of sampling explained 46% (permutational multivariate analysis of variance [PERMANOVA], pseudo-F = 3.7771, p = 0.001) and 27% (PERMANOVA, pseudo-F = 1.8705, p = 0.001) of variance in the exometabolome across the two diurnal cycles. Annotated metabolites included riboflavin, lumichrome, tryptophan, and azelaic acid, all of which have demonstrated roles in microbe-microbe interactions in other ecosystems and should be tested for potential roles in the development of microbial blooms on bare ice surfaces.


Assuntos
Camada de Gelo , Microbiota , Groenlândia , Estações do Ano
2.
Environ Res ; 257: 119242, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821457

RESUMO

In an attempt to discover and characterize the plethora of xenobiotic substances, this study investigates chemical compounds released into the environment with wastewater effluents. A novel non-targeted screening methodology based on ultra-high resolution Orbitrap mass spectrometry and nanoflow ultra-high performance liquid chromatography together with a newly optimized data-processing pipeline were applied to effluent samples from two state-of-the-art and one small wastewater treatment facility. In total, 785 molecular structures were obtained, of which 38 were identified as single compounds, while 480 structures were identified at a putative level. Most of these substances were therapeutics and drugs, present as parent compounds and metabolites. Using R packages Phyloseq and MetacodeR, originally developed for bioinformatics, significant differences in xenobiotic presence in the wastewater effluents between the three sites were demonstrated.

3.
Appl Microbiol Biotechnol ; 101(13): 5235-5245, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28616645

RESUMO

The pesticide metabolite 2,6-dichlorobenzamide (BAM) is very persistent in both soil and groundwater and has become one of the most frequently detected groundwater micropollutants. BAM is not removed by the physico-chemical treatment techniques currently used in drinking water treatment plants (DWTP); therefore, if concentrations exceed the legal threshold limit, it represents a sizeable problem for the stability and quality of drinking water production, especially in places that depend on groundwater for drinking water. Bioremediation is suggested as a valuable strategy for removing BAM from groundwater by deploying dedicated BAM-degrading bacteria in DWTP sand filters. Only a few bacterial strains with the capability to degrade BAM have been isolated, and of these, only three isolates belonging to the Aminobacter genus are able to mineralise BAM. Considerable effort has been made to elucidate degradation pathways, kinetics and degrader genes, and research has recently been presented on the application of strain Aminobacter sp. MSH1 for the purification of BAM-contaminated water. The aim of the present review was to provide insight into the issue of BAM contamination and to report on the current status and knowledge with regard to the application of microorganisms for purification of BAM-contaminated water resources. This paper discusses the prospects and challenges for bioaugmentation of DWTP sand filters with specific BAM-degrading bacteria and identifies relevant perspectives for future research.


Assuntos
Bactérias/metabolismo , Benzamidas/metabolismo , Água Subterrânea/química , Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Água Potável/química , Filtração , Água Subterrânea/microbiologia , Phyllobacteriaceae/metabolismo , Poluição da Água/prevenção & controle , Purificação da Água/métodos
4.
Appl Microbiol Biotechnol ; 100(20): 8965-73, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27437935

RESUMO

Groundwater contamination by pesticide residues often leads to the closure of drinking water wells, making the development of new techniques to remediate drinking water resources of considerable interest. Pesticide-degrading bacteria were recently added to a waterworks sand filter in an attempt to remediate pesticide-polluted drinking water. The density of the introduced bacteria, however, decreased rapidly, which was partly attributed to predation by protozoa in the sand filter. This study investigated the effects of indigenous sand filter protozoa on the population density and degradation efficiency of degrader bacteria introduced into sand from a waterworks sand filter. The 2,6-dichlorobenzamide (BAM)-degrading bacterium Aminobacter sp. MSH1 was used as a model organism. The introduction of MSH1 at high cell densities was followed by a >1000-fold increase in the protozoan population size and at the same time a 29 % reduction in Aminobacter cell numbers. The protozoan population in the systems that had MSH1 added at a lower density only increased 50-fold, and a decrease in Aminobacter numbers was not detectable. Furthermore, a reduction in the number of Aminobacter and in BAM degradation efficiency was seen in flow-through sand filter columns inoculated with MSH1 and fed BAM-contaminated water, when comparing sand columns containing the indigenous microbial filter community, i.e. containing protozoa, to columns with sterilised sand. These results suggest that degrader bacteria introduced into waterworks sand filters are adversely affected by grazing from the indigenous protozoa, reducing the size of the degrader population and the sand filter degradation efficiency.


Assuntos
Benzamidas/metabolismo , Eucariotos/metabolismo , Interações Microbianas , Phyllobacteriaceae/metabolismo , Filtração , Purificação da Água
5.
Environ Sci Technol ; 49(2): 839-46, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25522137

RESUMO

Rapid sand filtration is essential at most waterworks that treat anaerobic groundwater. Often the filtration depends on microbiological processes, but the microbial communities of the filters are largely unknown. We determined the prokaryotic community structures of 11 waterworks receiving groundwater from different geological settings by 16S rRNA gene-based 454 pyrosequencing and explored their relationships to filtration technology and raw water chemistry. Most of the variation in microbial diversity observed between different waterworks sand filters could be explained by the geochemistry of the inlet water. In addition, our findings suggested four features of particular interest: (1) Nitrospira dominated over Nitrobacter at all waterworks, suggesting that Nitrospira is a key nitrifying bacterium in groundwater-treating sand filters. (2) Hyphomicrobiaceae species were abundant at all waterworks, where they may be involved in manganese oxidation. (3) Six of 11 waterworks had significant concentrations of methane in their raw water and very high abundance of the methanotrophic Methylococcaceae. (4) The iron-oxidizing bacteria Gallionella was present at all waterworks suggesting that biological iron oxidation is occurring in addition to abiotic iron oxidation. Elucidation of key members of the microbial community in groundwater-treating sand filters has practical potential, for example, when methods are needed to improve filter function.


Assuntos
Água Subterrânea/análise , Água Subterrânea/microbiologia , Poluentes da Água/análise , Purificação da Água/métodos , Amônia/química , Bactérias/genética , Carbono/química , Filtração , Ferro/química , Manganês/química , Metano/química , Nitrobacter/genética , RNA Ribossômico 16S/genética , Dióxido de Silício/química , Microbiologia da Água
6.
Front Microbiol ; 15: 1358787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655082

RESUMO

The ikaite columns in the Ikka Fjord, SW Greenland, represent a permanently cold and alkaline environment known to contain a rich bacterial diversity. 16S and 18S rRNA gene amplicon and metagenomic sequencing was used to investigate the microbial diversity in the columns and for the first time, the eukaryotic and archaeal diversity in ikaite columns were analyzed. The results showed a rich prokaryotic diversity that varied across columns as well as within each column. Seven different archaeal phyla were documented in multiple locations inside the columns. The columns also contained a rich eukaryotic diversity with 27 phyla representing microalgae, protists, fungi, and small animals. Based on metagenomic sequencing, 25 high-quality MAGs were assembled and analyzed for the presence of genes involved in cycling of nitrogen, sulfur, and phosphorous as well as genes encoding carbohydrate-active enzymes (CAZymes), showing a potentially very bioactive microbial community.

7.
Sci Total Environ ; 929: 172590, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642746

RESUMO

Harmful cyanobacterial blooms have increased globally, releasing hazardous cyanotoxins that threaten the safety of water resources. Constructed wetlands (CWs) are a nature-based and low-cost solution to purify and remove cyanotoxins from water. However, bio-mechanistic understanding of the biotransformation processes expected to drive cyanotoxin removal in such systems is poor, and primarily focused on bacteria. Thus, the present study aimed at exploring the fungal contribution to microcystin-LR and cylindrospermopsin biodegradation in CWs. Based on CW mesocosms, two experimental approaches were taken: a) amplicon sequencing studies were conducted to investigate the involvement of the fungal community; and b) CW fungal isolates were tested for their microcystin-LR and cylindrospermopsin degradation capabilities. The data uncovered effects of seasonality (spring or summer), cyanotoxin exposure, vegetation (unplanted, Juncus effusus or Phragmites australis) and substratum (sand or gravel) on the fungal community structure. Additionally, the arbuscular mycorrhizal fungus Rhizophagus and the endophyte Myrmecridium showed positive correlations with cyanotoxin removal. Fungal isolates revealed microcystin-LR-removal potentials of approximately 25 % in in vitro biodegradation experiments, while the extracellular chemical fingerprint of the cultures suggested a potential intracellular metabolization. The results from this study may help us understand the fungal contribution to cyanotoxin removal, as well as their ecology in CWs.


Assuntos
Biodegradação Ambiental , Fungos , Microcistinas , Áreas Alagadas , Microcistinas/metabolismo , Fungos/metabolismo , Toxinas Bacterianas/metabolismo , Alcaloides/metabolismo , Toxinas de Cianobactérias , Toxinas Marinhas/metabolismo , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Uracila/análogos & derivados , Uracila/metabolismo
8.
Harmful Algae ; 131: 102549, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212082

RESUMO

Cyanobacterial blooms releasing harmful cyanotoxins, such as microcystin (MC) and cylindrospermopsin (CYN), are prominent threats to human and animal health. Constructed wetlands (CW) may be a nature-based solution for bioremediation of lake surface water containing cyanotoxins, due to its low-cost requirement of infrastructure and environmentally friendly operation. There is recent evidence that microcystin-LR (MC-LR) can efficiently be removed in CW microcosms where CYN degradation in CW is unknown. Likewise, the mechanistic background regarding cyanotoxins transformation in CW is not yet elucidated. In the present study, the objective was to compare MC-LR and CYN degradation efficiencies by two similar microbial communities obtained from CW mesocosms, by two different experiments setup: 1) in vitro batch experiment in serum bottles with an introduced CW community, and 2) degradation in CW mesocosms. In experiment 1) MC-LR and CYN were spiked at 100 µg L-1 and in experiment 2) 200 µg L-1 were spiked. Results showed that MC-LR was degraded to ≤1 µg L-1 within seven days in both experiments. However, with a markedly higher degradation rate constant in the CW mesocosms (0.18 day-1 and 0.75 day-1, respectively). No CYN removal was detected in the in vitro incubations, whereas around 50 % of the spiked CYN was removed in the CW mesocosms. The microbial community responded markedly to the cyanotoxin treatment, with the most prominent increase of bacteria affiliated with Methylophilaceae (order: Methylophilales, phylum: Proteobacteria). The results strongly indicate that CWs can develop an active microbial community capable of efficient removal of MC-LR and CYN. However, the CW operational conditions need to be optimized to achieve a full CYN degradation. To the best of our knowledge, this study is the first to report the ability of CW mesocosms to degrade CYN.


Assuntos
Alcaloides , Toxinas Bacterianas , Cianobactérias , Toxinas Marinhas , Animais , Humanos , Microcistinas/análise , Toxinas Bacterianas/metabolismo , Biodegradação Ambiental , Áreas Alagadas , Toxinas de Cianobactérias , Cianobactérias/metabolismo
9.
Front Microbiol ; 15: 1271599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444805

RESUMO

Anaerobic in vitro fermentation is widely used to simulate rumen kinetics and study the microbiome and metabolite profiling in a controlled lab environment. However, a better understanding of the interplay between the temporal dynamics of fermentation kinetics, metabolic profiles, and microbial composition in in vitro rumen fermentation batch systems is required. To fill that knowledge gap, we conducted three in vitro rumen fermentations with maize silage as the substrate, monitoring total gas production (TGP), dry matter degradability (dDM), and methane (CH4) concentration at 6, 12, 24, 36, and 48 h in each fermentation. At each time point, we collected rumen fluid samples for microbiome analysis and volatile fatty acid (VFA) analysis. Amplicon sequencing of 16S rRNA genes (V4 region) was used to profile the prokaryotic community structure in the rumen during the fermentation process. As the fermentation time increased, dDM, TGP, VFA concentrations, CH4 concentration, and yield (mL CH4 per g DM at standard temperature and pressure (STP)) significantly increased. For the dependent variables, CH4 concentration and yield, as well as the independent variables TGP and dDM, polynomial equations were fitted. These equations explained over 85% of the data variability (R2 > 0.85) and suggest that TGP and dDM can be used as predictors to estimate CH4 production in rumen fermentation systems. Microbiome analysis revealed a dominance of Bacteroidota, Cyanobacteria, Desulfobacterota, Euryarchaeota, Fibrobacterota, Firmicutes, Patescibacteria, Proteobacteria, Spirochaetota, and Verrucomicrobiota. Significant temporal variations in Bacteroidota, Campylobacterota, Firmicutes, Proteobacteria, and Spirochaetota were detected. Estimates of alpha diversity based on species richness and the Shannon index showed no variation between fermentation time points. This study demonstrated that the in vitro fermentation characteristics of a given feed type (e.g., maize silage) can be predicted from a few parameters (CH4 concentration and yield, tVFA, acetic acid, and propionic acid) without running the actual in vitro trial if the rumen fluid is collected from similar donor cows. Although the dynamics of the rumen prokaryotes changed remarkably over time and in accordance with the fermentation kinetics, more time points between 0 and 24 h are required to provide more details about the microbial temporal dynamics at the onset of the fermentation.

10.
Biodegradation ; 24(6): 765-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23361127

RESUMO

Microbial pesticide degradation studies have until now mainly focused on bacteria, although fungi have also been shown to degrade pesticides. In this study we clarify the background for the ability of the common soil fungus Mortierella to degrade the phenylurea herbicide diuron. Diuron degradation potentials of five Mortierella strains were compared, and the role of carbon and nitrogen for the degradation process was investigated. Results showed that the ability to degrade diuron varied greatly among the Mortierella strains tested, and the strains able to degrade diuron were closely related. Degradation of diuron was fastest in carbon and nitrogen rich media while suboptimal nutrient levels restricted degradation, making it unlikely that Mortierella utilize diuron as carbon or nitrogen sources. Degradation kinetics showed that diuron degradation was followed by formation of the metabolites 1-(3,4-dichlorophenyl)-3-methylurea, 1-(3,4-dichlorophenyl)urea and an hitherto unknown metabolite suggested to be 1-(3,4-dichlorophenyl)-3-methylideneurea.


Assuntos
Diurona/metabolismo , Herbicidas/metabolismo , Mortierella/classificação , Mortierella/metabolismo , Microbiologia do Solo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Carbono/farmacologia , Cromatografia Líquida de Alta Pressão , Diurona/química , Herbicidas/química , Cinética , Funções Verossimilhança , Dados de Sequência Molecular , Mortierella/efeitos dos fármacos , Mortierella/isolamento & purificação , Nitrogênio/farmacologia , Filogenia
11.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37791411

RESUMO

The microbiome of Greenland Ice Sheet supraglacial habitats is still underinvestigated, and as a result there is a lack of representative genomes from these environments. In this study, we investigated the supraglacial microbiome through a combination of culturing-dependent and -independent approaches. We explored ice, cryoconite, biofilm, and snow biodiversity to answer: (1) how microbial diversity differs between supraglacial habitats, (2) if obtained bacterial genomes reflect dominant community members, and (3) how culturing versus high throughput sequencing changes our observations of microbial diversity in supraglacial habitats. Genomes acquired through metagenomic sequencing (133 high-quality MAGs) and whole genome sequencing (73 bacterial isolates) were compared to the metagenome assemblies to investigate abundance within the total environmental DNA. Isolates obtained in this study were not dominant taxa in the habitat they were sampled from, in contrast to the obtained MAGs. We demonstrate here the advantages of using metagenome SSU rRNA genes to reflect whole-community diversity. Additionally, we demonstrate a proof-of-concept of the application of in situ culturing in a supraglacial setting.


Assuntos
Camada de Gelo , Microbiota , Camada de Gelo/microbiologia , Groenlândia , Biodiversidade , Microbiota/genética , Metagenoma
12.
Ecotoxicol Environ Saf ; 80: 216-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22475389

RESUMO

Toxicity of nano-formulated silver to eukaryotes was assessed by exposing nematodes (Caenorhabditis elegans) to two types of silver nanoparticles (AgNPs): with average primary particle diameters of 1 nm (AgNP1) and 28nm (AgNP28, PVP coated), respectively. Tests were performed with and without presence of Escherichia coli to evaluate how the presence of a food bacterium affects the AgNP toxicity. A pre-exposure experiment was also conducted with nematodes pre-exposed to 0 and 1mgAgNPL(-1), respectively, for 20 h prior to exposure at higher concentrations of AgNP. Both AgNP1 and AgNP28 showed adverse dose-response effects and mortality on C. elegans. LC(50) for AgNP28 was lower than for AgNP1 and, hence, at the present test conditions the PVP-coated AgNP28 was more toxic than AgNP1. Including E. coli in the test medium as a food source increased AgNPs toxicity towards nematodes compared to when bacteria were not present. Pre-exposure to a low-level AgNP1 concentration made the nematodes slightly more sensitive to further exposure at higher concentrations compared to no pre-exposure, indicating that nematodes have no efficient physiological ability to counteract nano-silver toxicity by acclimation. The amount of dissolved Ag(+) was 0.18 to 0.21 mg L(-1) after 20 h at the highest AgNP1 (10 mg L(-1)) and AgNP28 (3 mg L(-1)) doses in the exposure medium, respectively. The upper limit of Ag(+) solubility cannot immediately explain the dose-response-related toxic effects of the AgNP nor the difference between AgNP1 and AgNP28. Higher toxicity of AgNP28 than AgNP1 may be explained by a combination of effects of coating, Ag-solubility and higher uptake rates due to agglomeration into µm-size agglomerates in the exposure medium.


Assuntos
Substâncias Perigosas/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/fisiologia , Prata/metabolismo
13.
Commun Biol ; 5(1): 241, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304890

RESUMO

The microbial biodiversity found in different vitivinicultural regions is an important determinant of wine terroir. It should be studied and preserved, although it may, in the future, be subjected to manipulation by precision agriculture and oenology. Here, we conducted a global survey of vineyards' soil microbial communities. We analysed soil samples from 200 vineyards on four continents to establish the basis for the development of a vineyard soil microbiome's map, representing microbial biogeographical patterns on a global scale. This study describes vineyard microbial communities worldwide and establishes links between vineyard locations and microbial biodiversity on different scales: between continents, countries, and between different regions within the same country. Climate data correlates with fungal alpha diversity but not with prokaryotes alpha diversity, while spatial distance, on a global and national scale, is the main variable explaining beta-diversity in fungal and prokaryotes communities. Proteobacteria, Actinobacteria and Acidobacteria phyla, and Archaea genus Nitrososphaera dominate prokaryotic communities in soil samples while the overall fungal community is dominated by the genera Solicoccozyma, Mortierella and Alternaria. Finally, we used microbiome data to develop a predictive model based on random forest analyses to discriminate between microbial patterns and to predict the geographical source of the samples with reasonable precision.


Assuntos
Microbiota , Solo , Biodiversidade , Fazendas , Fungos/genética
14.
Water Res ; 216: 118352, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358881

RESUMO

Groundwater contamination by recalcitrant organic micropollutants such as pesticide residues poses a great threat to the quality of drinking water. One way to remediate drinking water containing micropollutants is to bioaugment with specific pollutant degrading bacteria. Previous attempts to augment sand filters with the 2,6-dichlorobenzamide (BAM) degrading bacterium Aminobacter niigataensis MSH1 to remediate BAM-polluted drinking water initially worked well, but the efficiency rapidly decreased due to loss of degrader bacteria. Here, we use pilot-scale augmented sand filters to treat retentate of reverse osmosis treatment, thus increasing residence time in the biofilters and potentially nutrient availability. In a first pilot-scale experiment, BAM and most of the measured nutrients were concentrated 5-10 times in the retentate. This did not adversely affect the abundances of inoculated bacteria and the general prokaryotic community of the sand filter presented only minor differences. On the other hand, the high degradation activity was not prolonged compared to the filter receiving non-concentrated water at the same residence time. Using laboratory columns, it was shown that efficient BAM degradation could be achieved for >100 days by increasing the residence time in the sand filter. A slower flow may have practical implications for the treatment of large volumes of water, however this can be circumvented when treating only the retentate water equalling 10-15% of the volume of inlet water. We therefore conducted a second pilot-scale experiment with two inoculated sand filters receiving membrane retentate operated with different residence times (22 versus 133 min) for 65 days. While the number of MSH1 in the biofilters was not affected, the effect on degradation was significant. In the filter with short residence time, BAM degradation decreased from 86% to a stable level of 10-30% degradation within the first two weeks. The filter with the long residence time initially showed >97% BAM degradation, which only slightly decreased with time (88% at day 65). Our study demonstrates the advantage of combining membrane filtration with bioaugmented filters in cases where flow rate is of high importance.


Assuntos
Água Potável , Resíduos de Praguicidas , Poluentes Químicos da Água , Purificação da Água , Bactérias/metabolismo , Benzamidas/metabolismo , Água Potável/química , Filtração , Osmose , Poluentes Químicos da Água/metabolismo
15.
Microbiol Resour Announc ; 11(5): e0022222, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35416691

RESUMO

Understanding basic interactions at the plant-soil interphase is critical if we are to exploit natural microbial communities for improved crop resilience. We report here 16S amplicon sequencing data from 3 rhizocompartments of 4 wheat cultivars grown under controlled greenhouse conditions. We observed that rhizocompartments and cultivar affect the community composition.

16.
Microbiol Resour Announc ; 11(11): e0066322, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36200901

RESUMO

Community composition and recruitment are important elements of plant-microbe interactions and may provide insights for plant development and resilience. The results of 16S rRNA amplicon sequencing from four rhizocompartments for four wheat cultivars grown under controlled conditions and sampled after flag leaf emergence are provided. Data demonstrate differences in microbial communities according to rhizocompartment.

17.
Front Microbiol ; 12: 809076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35360653

RESUMO

Ice caves constitute the newly investigated frozen and secluded model habitats for evaluating the resilience of ice-entrapped microbiomes in response to climate changes. This survey identified the total and active prokaryotic and eukaryotic communities from millennium-old ice accumulated in Scarisoara cave (Romania) using Illumina shotgun sequencing of the ribosomal RNA (rRNA) and messenger RNA (mRNA)-based functional analysis of the metatranscriptome. Also, the response of active microbiome to heat shock treatment mimicking the environmental shift during ice melting was evaluated at both the taxonomic and metabolic levels. The putatively active microbial community was dominated by bacterial taxa belonging to Proteobacteria and Bacteroidetes, which are highly resilient to thermal variations, while the scarcely present archaea belonging to Methanomicrobia was majorly affected by heat shock. Among eukaryotes, the fungal rRNA community was shared between the resilient Chytridiomycota and Blastocladiomycota, and the more sensitive Ascomycota and Basidiomycota taxa. A complex microeukaryotic community highly represented by Tardigrada and Rotifera (Metazoa), Ciliophora and Cercozoa (Protozoa), and Chlorophyta (Plantae) was evidenced for the first time in this habitat. This community showed a quick reaction to heat shock, followed by a partial recovery after prolonged incubation at 4°C due to possible predation processes on the prokaryotic cluster. Analysis of mRNA differential gene expression revealed the presence of an active microbiome in the perennial ice from the Scarisoara cave and associated molecular mechanisms for coping with temperature variations by the upregulation of genes involved in enzyme recovery, energy storage, carbon and nitrogen regulation, and cell motility. This first report on the active microbiome embedded in perennial ice from caves and its response to temperature stress provided a glimpse into the impact of glaciers melting and the resilience mechanisms in this habitat, contributing to the knowledge on the functional role of active microbes in frozen environments and their response to climatic changes.

18.
Sci Rep ; 11(1): 742, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436951

RESUMO

Wood ash is alkaline and contains base-cations. Application of wood ash to forests therefore counteracts soil acidification and recycle nutrients removed during harvest. Wood ash application to soil leads to strong vertical gradients in physicochemical parameters. Consequently, we designed an experimental system where small-scale vertical changes in soil properties and prokaryotic community structure could be followed after wood ash application. A mixed fly and bottom ash was applied in dosages of 3 and 9 t ha-1 to the surface of soil mesocosms, simulating a typical coniferous podzol. Soil pH, exchangeable cations and 16S prokaryotic community was subsequently assessed at small depth intervals to 5 cm depth at regular intervals for one year. Wood ash significantly changed the prokaryotic community in the top of the soil column. Also, the largest increases in pH and concentrations of exchangeable cations was found here. The relative abundance of prokaryotic groups directionally changed, suggesting that wood ash favors copiotrophic prokaryotes at the expense of oligotrophic and acidophilic taxa. The effect of wood ash were negligible both in terms of pH- and biological changes in lower soil layers. Consequently, by micro-vertical profiling we showed that wood ash causes a steep gradient of abiotic factors driving biotic changes but only in the top-most soil layers.

19.
Sci Rep ; 11(1): 18943, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556718

RESUMO

Aminobacter sp. MSH1 (CIP 110285) can use the pesticide dichlobenil and its recalcitrant transformation product, 2,6-dichlorobenzamide (BAM), as sole source of carbon, nitrogen, and energy. The concentration of BAM in groundwater often exceeds the threshold limit for drinking water, requiring additional treatment in drinking water treatment plants or closure of the affected abstraction wells. Biological treatment with MSH1 is considered a potential sustainable alternative to remediate BAM-contamination in drinking water production. We present the complete genome of MSH1, which was determined independently in two institutes at Aarhus University and KU Leuven. Divergences were observed between the two genomes, i.e. one of them lacked four plasmids compared to the other. Besides the circular chromosome and the two previously described plasmids involved in BAM catabolism, pBAM1 and pBAM2, the genome of MSH1 contained two megaplasmids and three smaller plasmids. The MSH1 substrain from KU Leuven showed a reduced genome lacking a megaplasmid and three smaller plasmids and was designated substrain MK1, whereas the Aarhus variant with all plasmids was designated substrain DK1. A plasmid stability experiment indicate that substrain DK1 may have a polyploid chromosome when growing in R2B medium with more chromosomes than plasmids per cell. Finally, strain MSH1 is reassigned as Aminobacter niigataensis MSH1.


Assuntos
Benzamidas/metabolismo , Água Subterrânea/química , Phyllobacteriaceae/genética , Purificação da Água/métodos , Benzamidas/toxicidade , Biodegradação Ambiental , Genoma Bacteriano , Herbicidas/metabolismo , Herbicidas/toxicidade , Nitrilas/metabolismo , Nitrilas/toxicidade , Phyllobacteriaceae/metabolismo , Filogenia , Plasmídeos/genética , Poliploidia , Análise de Sequência de DNA
20.
Sci Rep ; 10(1): 681, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959791

RESUMO

Winemakers have long used copper as a conventional fungicide treatment on grapevine and only recently, the use of biocontrol agents depicted a promising alternative. Most of the studies that investigate the impact of fungicide treatments, focus on specific pathogenic microbes. In the present work instead, a field experiment conducted in South Africa shows the seasonal microbial change occurring on grapevine leaves, periodically treated with two different fungicide treatments: copper sulphate and Lactobacillus plantarum MW-1. In this work, NGS data were combined with strain-specific and community qPCRs to reveal the shift of the microbial communities throughout the growing season and highlight the impact of fungicides on the microbiota. Only the family of Lactobacillaceae systematically changed between treatments, while the bacterial community remained relatively stable over time. MW-1 was exclusively detected on biocontrol-sprayed leaves. Conversely, the fungal community was largely shaped by sampling time, underlining the succession of different dominant taxa over the months. Between treatments, only a few fungal taxa appeared to change significantly and the fungal load was also comparable. Monitoring the dynamics of the microbial community under different fungicide treatments may advise the best timing to apply treatments to the plants, toward the realization of more sustainable agricultural practices.


Assuntos
Agricultura/métodos , Sulfato de Cobre/farmacologia , Fungicidas Industriais/farmacologia , Lactobacillus plantarum/efeitos dos fármacos , Micobioma/efeitos dos fármacos , Folhas de Planta/microbiologia , Vitis/microbiologia , Estações do Ano , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA