Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Tissue Eng Part A ; 23(11-12): 572-584, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28162053

RESUMO

Wounds to the head, neck, and extremities have been estimated to account for ∼84% of reported combat injuries to military personnel. Volumetric muscle loss (VML), defined as skeletal muscle injuries in which tissue loss results in permanent functional impairment, is common among these injuries. The present standard of care entails the use of muscle flap transfers, which suffer from the need for additional surgery when using autografts or the risk of rejection when cadaveric grafts are used. Tissue engineering (TE) strategies for skeletal muscle repair have been investigated as a means to overcome current therapeutic limitations. In that regard, human hair-derived keratin (KN) biomaterials have been found to possess several favorable properties for use in TE applications and, as such, are a viable candidate for use in skeletal muscle repair. Herein, KN hydrogels with and without the addition of skeletal muscle progenitor cells (MPCs) and/or insulin-like growth factor 1 (IGF-1) and/or basic fibroblast growth factor (bFGF) were implanted in an established murine model of surgically induced VML injury to the latissimus dorsi (LD) muscle. Control treatments included surgery with no repair (NR) as well as implantation of bladder acellular matrix (BAM). In vitro muscle contraction force was evaluated at two months postsurgery through electrical stimulation of the explanted LD in an organ bath. Functional data indicated that implantation of KN+bFGF+IGF-1 (n = 8) enabled a greater recovery of contractile force than KN+bFGF (n = 8)***, KN+MPC (n = 8)**, KN+MPC+bFGF+IGF-1 (n = 8)**, BAM (n = 8)*, KN+IGF-1 (n = 8)*, KN+MPCs+bFGF (n = 9)*, or NR (n = 9)**, (*p < 0.05, **p < 0.01, ***p < 0.001). Consistent with the physiological findings, histological evaluation of retrieved tissue revealed much more extensive new muscle tissue formation in groups with greater functional recovery (e.g., KN+IGF-1+bFGF) when compared with observations in tissue from groups with lower functional recovery (i.e., BAM and NR). Taken together, these findings further indicate the general utility of KN biomaterials in TE and, moreover, specifically highlight their potential application in the treatment of VML injuries.


Assuntos
Portadores de Fármacos , Fator 2 de Crescimento de Fibroblastos , Hidrogéis , Fator de Crescimento Insulin-Like I , Queratinas , Músculo Esquelético , Regeneração/efeitos dos fármacos , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/farmacologia , Queratinas/química , Queratinas/farmacologia , Camundongos , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Suínos
2.
Tissue Eng Part A ; 23(11-12): 556-571, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28169594

RESUMO

Volumetric muscle loss (VML) injuries exceed the considerable intrinsic regenerative capacity of skeletal muscle, resulting in permanent functional and cosmetic deficits. VML and VML-like injuries occur in military and civilian populations, due to trauma and surgery as well as due to a host of congenital and acquired diseases/syndromes. Current therapeutic options are limited, and new approaches are needed for a more complete functional regeneration of muscle. A potential solution is human hair-derived keratin (KN) biomaterials that may have significant potential for regenerative therapy. The goal of these studies was to evaluate the utility of keratin hydrogel formulations as a cell and/or growth factor delivery vehicle for functional muscle regeneration in a surgically created VML injury in the rat tibialis anterior (TA) muscle. VML injuries were treated with KN hydrogels in the absence and presence of skeletal muscle progenitor cells (MPCs), and/or insulin-like growth factor 1 (IGF-1), and/or basic fibroblast growth factor (bFGF). Controls included VML injuries with no repair (NR), and implantation of bladder acellular matrix (BAM, without cells). Initial studies conducted 8 weeks post-VML injury indicated that application of keratin hydrogels with growth factors (KN, KN+IGF-1, KN+bFGF, and KN+IGF-1+bFGF, n = 8 each) enabled a significantly greater functional recovery than NR (n = 7), BAM (n = 8), or the addition of MPCs to the keratin hydrogel (KN+MPC, KN+MPC+IGF-1, KN+MPC+bFGF, and KN+MPC+IGF-1+bFGF, n = 8 each) (p < 0.05). A second series of studies examined functional recovery for as many as 12 weeks post-VML injury after application of keratin hydrogels in the absence of cells. A significant time-dependent increase in functional recovery of the KN, KN+bFGF, and KN+IGF+bFGF groups was observed, relative to NR and BAM implantation, achieving as much as 90% of the maximum possible functional recovery. Histological findings from harvested tissue at 12 weeks post-VML injury documented significant increases in neo-muscle tissue formation in all keratin treatment groups as well as diminished fibrosis, in comparison to both BAM and NR. In conclusion, keratin hydrogel implantation promoted statistically significant and physiologically relevant improvements in functional outcomes post-VML injury to the rodent TA muscle.


Assuntos
Hidrogéis , Queratinas , Músculo Esquelético , Regeneração/efeitos dos fármacos , Animais , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Queratinas/química , Queratinas/farmacologia , Masculino , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Ratos , Ratos Endogâmicos Lew
3.
J Biomed Mater Res B Appl Biomater ; 104(5): 864-79, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25953729

RESUMO

Ideal material characteristics for tissue engineering or regenerative medicine approaches to volumetric muscle loss (VML) include the ability to deliver cells, growth factors, and molecules that support tissue formation from a system with a tunable degradation profile. Two different types of human hair-derived keratins were tested as options to fulfill these VML design requirements: (1) oxidatively extracted keratin (keratose) characterized by a lack of covalent crosslinking between cysteine residues, and (2) reductively extracted keratin (kerateine) characterized by disulfide crosslinks. Human skeletal muscle myoblasts cultured on coatings of both types of keratin had increased numbers of multinucleated cells compared to collagen or Matrigel(TM) and adhesion levels greater than collagen. Rheology showed elastic moduli from 10(2) to 10(5) Pa and viscous moduli from 10(1) to 10(4) Pa depending on gel concentration and keratin type. Kerateine and keratose showed differing rates of degradation due to the presence or absence of disulfide crosslinks, which likely contributed to observed differences in release profiles of several growth factors. In vivo testing in a subcutaneous mouse model showed that keratose hydrogels can be used to deliver mouse muscle progenitor cells and growth factors. Histological assessment showed minimal inflammatory responses and an increase in markers of muscle formation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 864-879, 2016.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos e Proteínas de Sinalização Intercelular , Queratinas , Mioblastos/metabolismo , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Queratinas/química , Queratinas/farmacologia , Mioblastos/classificação
4.
Biomaterials ; 35(10): 3220-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24439399

RESUMO

Absorbable collagen sponges (ACS) are used clinically as carriers of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote bone regeneration. ACS exhibit ectopic bone growth due to delivery of supraphysiological levels of rhBMP-2, which is particularly problematic in craniofacial bone injuries for both functional and esthetic reasons. We hypothesized that hydrogels from the reduced form of keratin proteins (kerateine) would serve as a suitable alternative to ACS carriers of rhBMP-2. The rationale for this hypothesis is that keratin biomaterials degrade slowly in vivo, have modifiable material properties, and have demonstrated capacity to deliver therapeutic agents. We investigated kerateine hydrogels and freeze-dried scaffolds as rhBMP-2 carriers in a critically-sized rat mandibular defect model. ACS, kerateine hydrogels, and kerateine scaffolds loaded with rhBMP-2 achieved bridging in animals by 8 weeks as indicated by micro-computed tomography. Kerateine scaffolds achieved statistically increased bone mineral density compared to ACS and kerateine hydrogels, with levels reaching those of native bone. Importantly, both kerateine hydrogels and kerateine scaffolds had significantly less ectopic bone growth than ACS sponges at both 8 and 16 weeks post-operatively. These studies demonstrate the suitability of keratins as rhBMP-2 carriers due to equal regenerative capacity with reduced ectopic growth compared to ACS.


Assuntos
Materiais Biocompatíveis , Desenvolvimento Ósseo , Proteína Morfogenética Óssea 2/administração & dosagem , Queratinas/química , Mandíbula/anormalidades , Animais , Regeneração Óssea , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Reologia , Alicerces Teciduais
5.
Biomaterials ; 34(6): 1644-56, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23211447

RESUMO

Infuse(®) is used clinically to promote bone repair. Its efficacy is dependent on a crosslinked collagen carrier/scaffold system that has come under scrutiny due to an inability to control BMP-2 release, which may result in unwanted outcomes such as heterotopic ossification. In this study, keratose biomaterial was evaluated as a new carrier/scaffold. Keratose was mixed with BMP-2, fabricated into a scaffold, and implanted into a critical-size rat femoral defect. This construct showed bridging as early as 4 weeks and induced trabecular morphology characteristic of a remodeling hard fracture callus at 16 weeks. Compared to the normal cortical bone, the regenerated tissue had greater volume and mineral content but less density and ultimate shear stress values. Moreover, µ-CT, biomechanics, FTIR-ATR spectroscopy, and polarized light microscopy data showed regeneration using keratose was similar to an Infuse control. However, unlike Infuse's collagen carrier system, in vitro analysis showed that BMP-2 release correlated with keratose scaffold degradation. Surprisingly, treatment with keratose only led to deposition of more bone outgrowth than the untreated negative control at the 8-week time point. The application of keratose also demonstrated a notable reduction of adipose tissues within the gap. While not able to induce osteogenesis on its own, keratose may be the first biomaterial capable of suppressing adipose tissue formation, thereby indirectly enhancing bone regeneration.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Osso e Ossos/fisiologia , Regeneração , Alicerces Teciduais , Animais , Fenômenos Biomecânicos , Ratos , Espectrofotometria Infravermelho
6.
J Biomed Mater Res A ; 98(4): 544-53, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21681948

RESUMO

Keratins are naturally derived proteins that can be fabricated into several biomaterial forms including hydrogels. These materials are a potential polymeric system for several tissue engineering and regenerative medicine applications due to their ability to support cell attachment, proliferation, and migration. However, little is known regarding their ability to support sustained release of therapeutic agents. This report describes the use of keratin hydrogels for sustained release of the antibiotic ciprofloxacin, which may prove useful to traumatic injury applications that would benefit from materials promoting tissue regeneration while also preventing acute infection. Hydrogels were formed from keratins obtained by oxidative extraction and known as keratose. We found that keratose hydrogels released ~60% of loaded ciprofloxacin over the first 10 days and that continued release was detectable over the course of 3 weeks. Released ciprofloxacin was bioactive, inhibiting growth of Staphylococcus aureus for 23 days in vitro and for 2 weeks in a mouse subcutaneous model. The rate of ciprofloxacin release was highly correlated with degradation of the keratin hydrogel and not consistent with simple diffusion. Further experiments indicated that ciprofloxacin binds to keratose through electrostatic interactions. These studies demonstrate the specific use of keratose hydrogels for the release of antibiotic and the potential for the more general use of this material in tissue engineering and regenerative medicine applications.


Assuntos
Ciprofloxacina/metabolismo , Preparações de Ação Retardada/química , Hidrogéis/química , Hidrogéis/metabolismo , Queratinas/química , Queratinas/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Ciprofloxacina/química , Ciprofloxacina/uso terapêutico , Preparações de Ação Retardada/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Humanos , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA