Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 602(7895): 135-141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34987223

RESUMO

The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two ß-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.


Assuntos
Antibacterianos/história , Arthrodermataceae/metabolismo , Ouriços/metabolismo , Ouriços/microbiologia , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/genética , Seleção Genética/genética , Animais , Antibacterianos/metabolismo , Arthrodermataceae/genética , Dinamarca , Europa (Continente) , Evolução Molecular , Mapeamento Geográfico , História do Século XX , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Nova Zelândia , Saúde Única , Penicilinas/biossíntese , Filogenia , beta-Lactamas/metabolismo
2.
J Infect Dis ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245822

RESUMO

BACKGROUND: Carbapenemase-producing Enterobacterales (CPE) are challenging in healthcare, with resistance to multiple classes of antibiotics. This study describes the emergence of IMP-encoding CPE amongst diverse Enterobacterales species between 2016 and 2019 across a London regional network. METHODS: We performed a network analysis of patient pathways, using electronic health records, to identify contacts between IMP-encoding CPE positive patients. Genomes of IMP-encoding CPE isolates were overlayed with patient contacts to imply potential transmission events. RESULTS: Genomic analysis of 84 Enterobacterales isolates revealed diverse species (predominantly Klebsiella spp, Enterobacter spp, E. coli); 86% (72/84) harboured an IncHI2 plasmid carrying blaIMP and colistin resistance gene mcr-9 (68/72). Phylogenetic analysis of IncHI2 plasmids identified three lineages showing significant association with patient contacts and movements between four hospital sites and across medical specialities, which was missed on initial investigations. CONCLUSIONS: Combined, our patient network and plasmid analyses demonstrate an interspecies, plasmid-mediated outbreak of blaIMPCPE, which remained unidentified during standard investigations. With DNA sequencing and multi-modal data incorporation, the outbreak investigation approach proposed here provides a framework for real-time identification of key factors causing pathogen spread. Plasmid-level outbreak analysis reveals that resistance spread may be wider than suspected, allowing more interventions to stop transmission within hospital networks.

3.
J Antimicrob Chemother ; 77(3): 620-624, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34993543

RESUMO

OBJECTIVES: To assess the genetic contexts surrounding blaNDM-1 genes carried on IncM plasmids harboured by six carbapenemase-producing Enterobacterales (CPE) isolates referred to the UK Health Security Agency's Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit. METHODS: Between 2014 and 2018, the AMRHAI Reference Unit undertook WGS of CPE isolates using Illumina NGS. Nanopore sequencing was used for selected isolates and publicly available plasmid references were downloaded. Analysis of incRNA, which encodes the antisense RNA regulating plasmidic repA gene expression, was performed and bioinformatics tools were used to analyse whole plasmid sequences. RESULTS: Of 894 NDM-positive isolates of Enterobacterales, 44 NDM-1-positive isolates of five different species (Citrobacter spp., Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca) encoded the IncRNA locus of IncM2 plasmids. Long-read sequencing of six diverse isolates revealed related IncM2, NDM-1-encoding plasmids. Plasmid 'backbone' areas were conserved and contrasted with highly variable resistance regions. Sub-groupings of IncM2 plasmids encoding blaNDM-1 were detected; one sub-group occurred in five different health regions of England in every year. The diversity of NDM-1-encoding resistance gene integrons and transposons and their insertions sites in the plasmids indicated that NDM-1 has been acquired repeatedly by IncM2 variants. CONCLUSIONS: The use of sequencing helped inform: (i) a wide geographical distribution of isolates encoding NDM-1 on emergent IncM2 plasmids; (ii) variant plasmids have acquired NDM-1 separately; and (iii) dynamic arrangements and evolution of the resistance elements in this plasmid group. The geographical and temporal distribution of IncM2 plasmids that encode NDM-1 highlights them as a public health threat that requires ongoing monitoring.


Assuntos
Farmacorresistência Bacteriana/genética , Enterobacteriaceae , beta-Lactamases , Proteínas de Bactérias/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , beta-Lactamases/genética
4.
J Antimicrob Chemother ; 77(6): 1753-1761, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35265995

RESUMO

OBJECTIVES: Escherichia coli bloodstream infections have shown a sustained increase in England, for reasons that are unknown. Furthermore, the contribution of MDR lineages such as ST131 to overall E. coli disease burden and outcome is undetermined. METHODS: We genome-sequenced E. coli blood isolates from all patients with E. coli bacteraemia in north-west London from July 2015 to August 2016 and assigned MLST genotypes, virulence factors and AMR genes to all isolates. Isolate STs were then linked to phenotypic antimicrobial susceptibility, patient demographics and clinical outcome data to explore relationships between the E. coli STs, patient factors and outcomes. RESULTS: A total of 551 E. coli genomes were analysed. Four STs (ST131, 21.2%; ST73, 14.5%; ST69, 9.3%; and ST95, 8.2%) accounted for over half of cases. E. coli genotype ST131-C2 was associated with phenotypic non-susceptibility to quinolones, third-generation cephalosporins, amoxicillin, amoxicillin/clavulanic acid, gentamicin and trimethoprim. Among 300 patients from whom outcome was known, an association between the ST131-C2 lineage and longer length of stay was detected, although multivariable regression modelling did not demonstrate an association between E. coli ST and mortality. Several unexpected associations were identified between gentamicin non-susceptibility, ethnicity, sex and adverse outcomes, requiring further research. CONCLUSIONS: Although E. coli ST was associated with defined antimicrobial non-susceptibility patterns and prolonged length of stay, E. coli ST was not associated with increased mortality. ST131 has outcompeted other lineages in north-west London. Where ST131 is prevalent, caution is required when devising empiric regimens for suspected Gram-negative sepsis, in particular the pairing of ß-lactam agents with gentamicin.


Assuntos
Anti-Infecciosos , Bacteriemia , Infecções por Escherichia coli , Amoxicilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Genótipo , Gentamicinas , Humanos , Tipagem de Sequências Multilocus , Estudos Prospectivos , Fatores de Risco , beta-Lactamases/genética
5.
J Antimicrob Chemother ; 76(1): 160-170, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33305800

RESUMO

BACKGROUND: Boronates are of growing interest as ß-lactamase inhibitors. The only marketed analogue, vaborbactam, principally targets KPC carbapenemases, but taniborbactam (VNRX-5133, Venatorx) has a broader spectrum. METHODS: MICs of cefepime and meropenem were determined combined with taniborbactam or avibactam for carbapenem-resistant UK isolates. ß-Lactamase genes and porin alterations were sought by PCR or sequencing. RESULTS: Taniborbactam potentiated partner ß-lactams against: (i) Enterobacterales with KPC, other class A, OXA-48-like, VIM and NDM (not IMP) carbapenemases; and (ii) Enterobacterales inferred to have combinations of ESBL or AmpC activity and impermeability. Potentiation of cefepime (the partner for clinical development) by taniborbactam was slightly weaker than by avibactam for Enterobacterales with KPC or OXA-48-like carbapenemases, but MICs of cefepime/taniborbactam were similar to those of ceftazidime/avibactam, and the spectrum was wider. MICs of cefepime/taniborbactam nonetheless remained >8 + 4 mg/L for 22%-32% of NDM-producing Enterobacterales. Correlates of raised cefepime/taniborbactam MICs among these NDM Enterobacterales were a cefepime MIC >128 mg/L, particular STs and, for Escherichia coli only: (i) the particular blaNDM variant (even though published data suggest all variants are inhibited similarly); (ii) inserts in PBP3; and (iii) raised aztreonam/avibactam MICs. Little or no potentiation of cefepime or meropenem was seen for Pseudomonas aeruginosa and Acinetobacter baumannii with MBLs, probably reflecting slower uptake or stronger efflux. Potentiation of cefepime was seen for Stenotrophomonas maltophilia and Elizabethkingia meningoseptica, which have both chromosomal ESBLs and MBLs. CONCLUSIONS: Taniborbactam broadly reversed cefepime or meropenem non-susceptibility in Enterobacterales and, less reliably, in non-fermenters.


Assuntos
Ácidos Borínicos , Carbapenêmicos , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Ácidos Carboxílicos , Combinação de Medicamentos , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
6.
Clin Infect Dis ; 71(10): 2553-2560, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31746994

RESUMO

BACKGROUND: Early and accurate treatment of infections due to carbapenem-resistant organisms is facilitated by rapid diagnostics, but rare resistance mechanisms can compromise detection. One year after a Guiana Extended-Spectrum (GES)-5 carbapenemase-positive Klebsiella oxytoca infection was identified by whole-genome sequencing (WGS; later found to be part of a cluster of 3 cases), a cluster of 11 patients with GES-5-positive K. oxytoca was identified over 18 weeks in the same hospital. METHODS: Bacteria were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, antimicrobial susceptibility testing followed European Committee on Antimicrobial Susceptibility Testing guidelines. Ertapenem-resistant isolates were referred to Public Health England for characterization using polymerase chain reaction (PCR) detection of GES, pulsed-field gel electrophoresis (PFGE), and WGS for the second cluster. RESULTS: The identification of the first GES-5 K. oxytoca isolate was delayed, being identified by WGS. Implementation of a GES-gene PCR informed the occurrence of the second cluster in real time. In contrast to PFGE, WGS phylogenetic analysis refuted an epidemiological link between the 2 clusters; it also suggested a cascade of patient-to-patient transmission in the later cluster. A novel GES-5-encoding plasmid was present in K. oxytoca, Escherichia coli, and Enterobacter cloacae isolates from unlinked patients within the same hospital group and in human and wastewater isolates from 3 hospitals elsewhere in the United Kingdom. CONCLUSIONS: Genomic sequencing revolutionized the epidemiological understanding of the clusters; it also underlined the risk of covert plasmid propagation in healthcare settings and revealed the national distribution of the resistance-encoding plasmid. Sequencing results also informed and led to the ongoing use of enhanced diagnostic tests for detecting carbapenemases locally and nationally.


Assuntos
Proteínas de Bactérias , beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Inglaterra , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Reino Unido , beta-Lactamases/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-32094139

RESUMO

Carbapenem resistance in Enterobacterales is a public health threat. Klebsiella pneumoniae carbapenemase (encoded by alleles of the blaKPC family) is one of the most common transmissible carbapenem resistance mechanisms worldwide. The dissemination of blaKPC historically has been associated with distinct K. pneumoniae lineages (clonal group 258 [CG258]), a particular plasmid family (pKpQIL), and a composite transposon (Tn4401). In the United Kingdom, blaKPC has represented a large-scale, persistent management challenge for some hospitals, particularly in North West England. The dissemination of blaKPC has evolved to be polyclonal and polyspecies, but the genetic mechanisms underpinning this evolution have not been elucidated in detail; this study used short-read whole-genome sequencing of 604 blaKPC-positive isolates (Illumina) and long-read assembly (PacBio)/polishing (Illumina) of 21 isolates for characterization. We observed the dissemination of blaKPC (predominantly blaKPC-2; 573/604 [95%] isolates) across eight species and more than 100 known sequence types. Although there was some variation at the transposon level (mostly Tn4401a, 584/604 [97%] isolates; predominantly with ATTGA-ATTGA target site duplications, 465/604 [77%] isolates), blaKPC spread appears to have been supported by highly fluid, modular exchange of larger genetic segments among plasmid populations dominated by IncFIB (580/604 isolates), IncFII (545/604 isolates), and IncR (252/604 isolates) replicons. The subset of reconstructed plasmid sequences (21 isolates, 77 plasmids) also highlighted modular exchange among non-blaKPC and blaKPC plasmids and the common presence of multiple replicons within blaKPC plasmid structures (>60%). The substantial genomic plasticity observed has important implications for our understanding of the epidemiology of transmissible carbapenem resistance in Enterobacterales for the implementation of adequate surveillance approaches and for control.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Epidemiologia Molecular , Plasmídeos/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , DNA Bacteriano/química , DNA Bacteriano/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Genoma Bacteriano , Humanos , Infecções por Klebsiella/epidemiologia , Estudos Retrospectivos , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma
8.
J Antimicrob Chemother ; 75(7): 1681-1684, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32433765

RESUMO

The emergence of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has required an unprecedented response to control the spread of the infection and protect the most vulnerable within society. Whilst the pandemic has focused society on the threat of emerging infections and hand hygiene, certain infection control and antimicrobial stewardship policies may have to be relaxed. It is unclear whether the unintended consequences of these changes will have a net-positive or -negative impact on rates of antimicrobial resistance. Whilst the urgent focus must be on controlling this pandemic, sustained efforts to address the longer-term global threat of antimicrobial resistance should not be overlooked.


Assuntos
Gestão de Antimicrobianos/organização & administração , Infecções por Coronavirus , Atenção à Saúde/organização & administração , Resistência Microbiana a Medicamentos , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Higiene das Mãos , Humanos , Controle de Infecções/métodos , Pandemias/prevenção & controle , Isolamento de Pacientes , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , SARS-CoV-2
9.
Euro Surveill ; 24(37)2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31530344

RESUMO

BackgroundEscherichia coli ST131, a global, high-risk clone, comprises fluoroquinolone resistance (FQ-R) mutations and CTX-M extended-spectrum beta-lactamases associated with the fimH30-encoding clades, C1 and C2. Further carbapenem resistance development in ST131 is a public health concern.AimThis observational study aimed to probe the diversity of carbapenemase-producing E. coli (CP E. coli) ST131 across England.MethodsST131 isolates were identified using whole-genome sequencing (WGS) data generated for all non-duplicate CP E. coli from human samples submitted to the national reference laboratory from January 2014 to June 2016. Antimicrobial resistance (AMR) gene content and single nucleotide polymorphism (SNP) data were compared against a published ST131 phylogeny and analysed alongside patient metadata.ResultsThirty-nine genetically diverse ST131 CP E. coli, from eight of nine regions, represented 10% of CP E. coli isolates sequenced. Ten and eight isolates were from the FQ-susceptible (FQ-S) clades A and B, while eight and 15 isolates belonged to the FQ-R clades C1 or C2, respectively. Seven distinct carbapenemases were identified: KPC-2 (21 isolates, 6 regions) frequently occurred among clade C2 isolates (n = 10). OXA-48-producers (10 isolates, 3 regions) were often from clade A (n = 5). NDM-1 (n = 4), NDM-5 (n = 1), VIM-1 (n = 1), VIM-4 (n = 1) and OXA-181 (n = 1) were also identified. Clade C2 isolates encoded more AMR genes than those from clades A (p = 0.02), B (p = 9.6 x 10-3) or C1 (p = 0.03).ConclusionWhen compared with its global predominance among ESBL-E. coli, ST131 represented a fraction of the CP E. coli received, belonging to diverse clades and encoding diverse carbapenemases. The greater accumulation of resistance genes in clade C2 isolates highlights the need for ongoing monitoring of this high-risk lineage.


Assuntos
Antibacterianos/farmacologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Enterobacteriáceas Resistentes a Carbapenêmicos , Farmacorresistência Bacteriana Múltipla , Inglaterra/epidemiologia , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Genótipo , Humanos , Incidência , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem Molecular , Filogenia , Plasmídeos/análise , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
10.
J Antimicrob Chemother ; 73(3): 698-702, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253163

RESUMO

Objectives: Although carbapenem susceptibility testing has been recommended for all Enterobacteriaceae from clinical specimens, for practical reasons a carbapenem is not included in many primary antibiotic panels for urine specimens. The 'iCREST' study sought carbapenemase-producing Enterobacteriaceae (CPE) in routine urine specimens yielding Gram-negative growth in five diagnostic laboratories in the UK. We sought also to compare locally and centrally determined MICs of meropenem and ceftazidime/avibactam. Methods: Positive growth from up to 2000 urine specimens per laboratory was plated onto chromID® CARBA SMART agar. Suspected CPE colonies were tested locally by Etest for susceptibility to meropenem and ceftazidime/avibactam, and referred to central laboratories for PCR confirmation of CPE status and microbroth MIC determination. Results: Twenty-two suspected CPE were identified from 7504 urine specimens. Ten were confirmed by PCR to have NDM (5), IMP (2), KPC (2) or OXA-48-like (1) carbapenemases. Locally determined ceftazidime/avibactam MICs showed complete categorical agreement with those determined centrally by microbroth methodology. The seven ceftazidime/avibactam-resistant isolates (MICs ≥256 mg/L) had NDM or IMP metallo-carbapenemases. Conclusions: The frequency of confirmed CPE among Gram-negative urinary isolates was low, at 0.13% (10/7504), but CPE were found in urines at all five participating sites and the diversity of carbapenemase genes detected reflected the complex epidemiology of CPE in the UK. These data can inform local policies about the cost-effectiveness and clinical value of testing Gram-negative bacteria from urine specimens routinely against a carbapenem as part of patient management and/or infection prevention and control strategies.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/urina , Vigilância de Evento Sentinela , Adolescente , Adulto , Idoso , Antibacterianos/farmacologia , Proteínas de Bactérias , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Carbapenêmicos/farmacologia , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Prevalência , Reino Unido/epidemiologia , Adulto Jovem , beta-Lactamases
11.
Trends Genet ; 30(9): 401-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25096945

RESUMO

Following recent improvements in sequencing technologies, whole-genome sequencing (WGS) is positioned to become an essential tool in the control of antibiotic resistance, a major threat in modern healthcare. WGS has already found numerous applications in this area, ranging from the development of novel antibiotics and diagnostic tests through to antibiotic stewardship of currently available drugs via surveillance and the elucidation of the factors that allow the emergence and persistence of resistance. Numerous proof-of-principle studies have also highlighted the value of WGS as a tool for day-to-day infection control and, for some pathogens, as a primary diagnostic tool to detect antibiotic resistance. However, appropriate data analysis platforms will need to be developed before routine WGS can be introduced on a large scale.


Assuntos
Anti-Infecciosos/uso terapêutico , Infecções Bacterianas/prevenção & controle , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Genômica/métodos , Humanos
12.
Int J Med Microbiol ; 307(7): 422-429, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28789913

RESUMO

Multidrug resistant (MDR) Klebsiella pneumoniae is a common cause of nosocomial infections worldwide. Recent years have seen an explosion of resistance to extended-spectrum ß-lactamases (ESBLs) and emergence of carbapenem resistance. Here, we examine 198 invasive K. pneumoniae isolates collected from over a decade in Kilifi County Hospital (KCH) in Kenya. We observe a significant increase in MDR K. pneumoniae isolates, particularly to third generation cephalosporins conferred by ESBLs. Using whole-genome sequences, we describe the population structure and the distribution of antimicrobial resistance genes within it. More than half of the isolates examined in this study were ESBL-positive, encoding CTX-M-15, SHV-2, SHV-12 and SHV-27, and 79% were MDR conferring resistance to at least three antimicrobial classes. Although no isolates in our dataset were found to be resistant to carbapenems we did find a plasmid with the genetic architecture of a known New Delhi metallo-ß-lactamase-1 (NDM)-carrying plasmid in 25 isolates. In the absence of carbapenem use in KCH and because of the instability of the NDM-1 gene in the plasmid, the NDM-1 gene has been lost in these isolates. Our data suggests that isolates that encode NDM-1 could be present in the population; should carbapenems be introduced as treatment in public hospitals in Kenya, resistance is likely to ensue rapidly.


Assuntos
Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Surtos de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Hospitais de Condado , Quênia/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Fatores R , População Rural , beta-Lactamases/genética , beta-Lactamases/metabolismo
13.
Antimicrob Agents Chemother ; 60(4): 2383-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26856839

RESUMO

InEnterobacter cloacae, the genetic lesions associated with derepression of the AmpC ß-lactamase include diverse single nucleotide polymorphisms (SNPs) and/or indels in theampDandampRgenes and SNPs inampC, while diverse SNPs in the promoter region or SNPs/indels within the coding sequence of outer membrane proteins have been described to alter porin production leading to carbapenem resistance. We sought to define the underlying mechanisms conferring cephalosporin and carbapenem resistance in a collection ofE. cloacaeisolates with unusually high carbapenem resistance and no known carbapenemase and, in contrast to many previous studies, considered the SNPs we detected in relation to the multilocus sequence type (MLST)-based phylogeny of our collection. Whole-genome sequencing was applied on the most resistant isolates to seek novel carbapenemases, expression ofampCwas measured by reverse transcriptase PCR, and porin translation was detected by SDS-PAGE. SNPs occurring inampC,ampR,ompF, andompCgenes (and their promoter regions) were mostly phylogenetic variations, relating to the isolates' sequence types, whereas nonsynonymous SNPs inampDwere associated with derepression of AmpC and cephalosporin resistance. The additional loss of porins resulted in high-level carbapenem resistance, underlining the clinical importance of chromosomal mutations among carbapenem-resistantE. cloacae.


Assuntos
Proteínas de Bactérias/genética , Enterobacter cloacae/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , N-Acetil-Muramil-L-Alanina Amidase/genética , Porinas/genética , beta-Lactamases/genética , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Resistência às Cefalosporinas/genética , Enterobacter cloacae/classificação , Enterobacter cloacae/genética , Enterobacter cloacae/isolamento & purificação , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Humanos , Mutação INDEL , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Filogenia , Polimorfismo de Nucleotídeo Único , Porinas/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de DNA , beta-Lactamases/metabolismo
15.
J Antimicrob Chemother ; 71(8): 2300-5, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27090630

RESUMO

OBJECTIVES: In response to the first report of transmissible colistin resistance mediated by the mcr-1 gene in Escherichia coli and Klebsiella spp. from animals and humans in China, we sought to determine its presence in Enterobacteriaceae isolated in the UK. METHODS: The PHE archive of whole-genome sequences of isolates from surveillance collections, submissions to reference services and research projects was retrospectively analysed for the presence of mcr-1 using Genefinder. The genetic environment of the gene was also analysed. RESULTS: Rapid screening of the genomes of ∼24 000 Salmonella enterica, E. coli, Klebsiella spp., Enterobacter spp., Campylobacter spp. and Shigella spp. isolated from food or humans identified 15 mcr-1-positive isolates. These comprised: 10 human S. enterica isolates submitted between 2012 and 2015 (8 Salmonella Typhimurium, 1 Salmonella Paratyphi B var Java and 1 Salmonella Virchow) from 10 patients; 3 isolates of E. coli from 2 patients; and 2 isolates of Salmonella Paratyphi B var Java from poultry meat imported from the EU. The mcr-1 gene was located on diverse plasmids belonging to the IncHI2, IncI2 and IncX4 replicon types and its association with ISApl1 varied. Six mcr-1-positive S. enterica isolates were from patients who had recently travelled to Asia. CONCLUSIONS: Analysis of WGS data allowed rapid confirmation of the presence of the plasmid-mediated colistin resistance gene mcr-1 in diverse genetic environments and plasmids. It has been present in E. coli and Salmonella spp. harboured by humans in England and Wales since at least 2012.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Microbiologia de Alimentos , Genes Bacterianos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Biologia Computacional , Inglaterra , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasmídeos , Estudos Retrospectivos , Análise de Sequência de DNA , País de Gales , Adulto Jovem
16.
N Engl J Med ; 366(24): 2267-75, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22693998

RESUMO

BACKGROUND: Isolates of methicillin-resistant Staphylococcus aureus (MRSA) belonging to a single lineage are often indistinguishable by means of current typing techniques. Whole-genome sequencing may provide improved resolution to define transmission pathways and characterize outbreaks. METHODS: We investigated a putative MRSA outbreak in a neonatal intensive care unit. By using rapid high-throughput sequencing technology with a clinically relevant turnaround time, we retrospectively sequenced the DNA from seven isolates associated with the outbreak and another seven MRSA isolates associated with carriage of MRSA or bacteremia in the same hospital. RESULTS: We constructed a phylogenetic tree by comparing single-nucleotide polymorphisms (SNPs) in the core genome to a reference genome (an epidemic MRSA clone, EMRSA-15 [sequence type 22]). This revealed a distinct cluster of outbreak isolates and clear separation between these and the nonoutbreak isolates. A previously missed transmission event was detected between two patients with bacteremia who were not part of the outbreak. We created an artificial "resistome" of antibiotic-resistance genes and demonstrated concordance between it and the results of phenotypic susceptibility testing; we also created a "toxome" consisting of toxin genes. One outbreak isolate had a hypermutator phenotype with a higher number of SNPs than the other outbreak isolates, highlighting the difficulty of imposing a simple threshold for the number of SNPs between isolates to decide whether they are part of a recent transmission chain. CONCLUSIONS: Whole-genome sequencing can provide clinically relevant data within a time frame that can influence patient care. The need for automated data interpretation and the provision of clinically meaningful reports represent hurdles to clinical implementation. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.).


Assuntos
Bacteriemia/microbiologia , Surtos de Doenças , Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Bacteriemia/epidemiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , DNA Bacteriano/análise , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Análise de Sequência de DNA/métodos , Infecções Estafilocócicas/microbiologia
17.
Int J Syst Evol Microbiol ; 65(Pt 1): 15-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25269845

RESUMO

We define two novel species of the genus Staphylococcus that are phenotypically similar to and have near identical 16S rRNA gene sequences to Staphylococcus aureus. However, compared to S. aureus and each other, the two species, Staphylococcus argenteus sp. nov. (type strain MSHR1132(T) = DSM 28299(T) = SSI 89.005(T)) and Staphylococcus schweitzeri sp. nov. (type strain FSA084(T) = DSM 28300(T) = SSI 89.004(T)), demonstrate: 1) at a whole-genome level considerable phylogenetic distance, lack of admixture, average nucleotide identity <95 %, and inferred DNA-DNA hybridization <70 %; 2) different profiles as determined by MALDI-TOF MS; 3) a non-pigmented phenotype for S. argenteus sp. nov.; 4) S. schweitzeri sp. nov. is not detected by standard nucA PCR; 5) distinct peptidoglycan types compared to S. aureus; 6) a separate ecological niche for S. schweitzeri sp. nov.; and 7) a distinct clinical disease profile for S. argenteus sp. nov. compared to S. aureus.


Assuntos
Filogenia , Staphylococcus/classificação , Animais , Técnicas de Tipagem Bacteriana , Sequência de Bases , Cercopithecus/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Humanos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fenótipo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , Staphylococcus/genética , Staphylococcus/isolamento & purificação , Staphylococcus aureus , Vitamina K 2/química
18.
J Antimicrob Chemother ; 69(5): 1275-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24370932

RESUMO

OBJECTIVES: As a result of the introduction of rapid benchtop sequencers, the time required to subculture a bacterial pathogen to extract sufficient DNA for library preparation can now exceed the time to sequence said DNA. We have eliminated this rate-limiting step by developing a protocol to generate DNA libraries for whole-genome sequencing directly from single bacterial colonies grown on primary culture plates. METHODS: We developed our protocol using single colonies of 17 bacterial pathogens responsible for severe human infection that were grown using standard diagnostic media and incubation conditions. We then applied this method to four clinical scenarios that currently require time-consuming reference laboratory tests: full identification and genotyping of salmonellae; identification of blaNDM-1, a highly transmissible carbapenemase resistance gene, in Klebsiella pneumoniae; detection of genes encoding staphylococcal toxins associated with specific disease syndromes; and monitoring of vaccine targets to detect vaccine escape in Neisseria meningitidis. RESULTS: We validated our single-colony whole-genome sequencing protocol for all 40 combinations of pathogen and selective, non-selective or indicator media tested in this study. Moreover, we demonstrated the clinical value of this method compared with current reference laboratory tests. CONCLUSIONS: This advance will facilitate the implementation of whole-genome sequencing into diagnostic and public health microbiology.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Análise de Sequência de DNA/métodos , Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Humanos
19.
Br Med Bull ; 112(1): 27-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25274572

RESUMO

BACKGROUND: The goal of clinical microbiology is to identify the cause of infection, aiding rapid treatment initiation or altering empirically chosen anti-microbial regimens. Automation and molecular techniques have brought about a revolution in the clinical laboratory, ensuring ever faster and more accurate diagnoses. In the last few years however, there have been a number of developments that radically alter the way that microbiology and other diagnostic laboratories are advancing. In particular, clinical microbiology will have the opportunity to intervene at the public health level as well as at the individual patient. SOURCES OF DATA, AREAS OF AGREEMENT AND CONTROVERSY: Experts in the new technologies discuss the advances and some of the key literature that has been published to-date. They touch upon both the potential benefits and some of the hurdles that must be overcome before the technologies are embraced fully into the clinical laboratory. GROWING POINTS: This review discusses a number of technologies that may alter the way in which clinical microbiology is used to investigate infectious disease. Diagnostic services in the UK are currently undergoing a process of rationalization, which involves a shift towards laboratory amalgamation, adoption of 24/7 working patterns and greater automation in order to reduce costs. This review explores technologies that are already or are expected to be important in this on-going transition because they simplify or accelerate the complex workflows that are required for pathogen identification.


Assuntos
Doenças Transmissíveis/diagnóstico , Técnicas Microbiológicas/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas Microbiológicas/tendências , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/tendências , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
20.
J Clin Microbiol ; 51(2): 611-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175259

RESUMO

Two Southeast Asian students attending the same school in the United Kingdom presented with pulmonary tuberculosis. An epidemiological investigation failed to link the two cases, and drug resistance profiles of the Mycobacterium tuberculosis isolates were discrepant. Whole-genome sequencing of the isolates found them to be genetically identical, suggesting a missed transmission event.


Assuntos
Surtos de Doenças , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Adulto , Humanos , Masculino , Mycobacterium tuberculosis/classificação , Filogenia , Análise de Sequência de DNA , Tuberculose/transmissão , Reino Unido/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA