RESUMO
OBJECTIVE: To understand the CD8+ tumour infiltrating lymphocyte (TIL) compartment of oesophageal adenocarcinoma (OAC) with regards to markers of lymphocyte exhaustion, tissue residency and to identify possible reasons behind differential responses to therapy. DESIGN: Tumour samples from 44 patients undergoing curative resection for OAC were assessed by flow cytometry for presence of antigen-experienced TILs and markers of activation and exhaustion. Populations of PD-1 and CD39 positive OAC TILs were sorted, and bulk RNA sequencing undertaken using a modified SmartSeq2 protocol. Flow cytometric assessment of functionality was completed. RESULTS: A higher proportion of antigen experienced CD8+ OAC TILs was associated with improved survival following surgery; while, high double positivity (DP) for PD-1 and CD39 among these TILs also correlated significantly with outcome. These DP TILs possess a minority population which is positive for the markers of exhaustion TIM3 and LAG3. Transcriptomic assessment of the PD-1 and CD39 DP TILs demonstrated enrichment for a tissue resident memory T lymphocyte (TRM) phenotype associated with improved survival in other cancers, reinforced by positivity for the canonical TRM marker CD103 by flow cytometry. This population demonstrated maintained functional capacity both in their transcriptomic profile, and on flow cytometric assessment, as well as preserved proliferative capacity. CONCLUSION: Resected OAC are variably infiltrated by PD-1 and CD39 DP TILs, an abundance of which among lymphocytes is associated with improved survival. This DP population has an increased, but still modest, frequency of TIM3 and LAG3 positivity compared to DN, and is in keeping with a functionally competent TRM phenotype.
Assuntos
Adenocarcinoma , Antígenos CD , Apirase , Linfócitos T CD8-Positivos , Neoplasias Esofágicas , Linfócitos do Interstício Tumoral , Receptor de Morte Celular Programada 1 , Humanos , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/patologia , Receptor de Morte Celular Programada 1/metabolismo , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Apirase/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Masculino , Feminino , Antígenos CD/metabolismo , Pessoa de Meia-Idade , Idoso , Prognóstico , Biomarcadores Tumorais , Cadeias alfa de Integrinas/metabolismoRESUMO
Although fluorescence microscopy is ubiquitous in biomedical research, microscopy methods reporting is inconsistent and perhaps undervalued. We emphasize the importance of appropriate microscopy methods reporting and seek to educate researchers about how microscopy metadata impact data interpretation. We provide comprehensive guidelines and resources to enable accurate reporting for the most common fluorescence light microscopy modalities. We aim to improve microscopy reporting, thus improving the quality, rigor and reproducibility of image-based science.
Assuntos
Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/normas , Convallaria , Escherichia coli/metabolismo , Corantes Fluorescentes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imageamento Tridimensional , Microscopia Confocal/métodos , Reprodutibilidade dos Testes , Projetos de Pesquisa , Razão Sinal-Ruído , SoftwareRESUMO
CD8+ and CD4+ T cells provide cell-mediated cross-protection against multiple influenza strains by recognising epitopes bound as peptides to human leukocyte antigen (HLA) class I and -II molecules respectively. Two challenges in identifying the immunodominant epitopes needed to generate a universal T cell influenza vaccine are: A lack of cell models susceptible to influenza infection which present population-prevalent HLA allotypes, and an absence of a reliable in-vitro method of identifying class II HLA peptides. Here we present a mass spectrometry-based proteomics strategy for identifying viral peptides derived from the A/H3N2/X31 and A/H3N2/Wisconsin/67/2005 strains of influenza. We compared the HLA-I and -II immunopeptidomes presented by ex-vivo influenza challenged human lung tissues. We then compared these with directly infected immortalised macrophage-like cell line (THP1) and primary dendritic cells fed apoptotic influenza-infected respiratory epithelial cells. In each of the three experimental conditions we identified novel influenza class I and II HLA peptides with motifs specific for the host allotype. Ex-vivo infected lung tissues yielded few class-II HLA peptides despite significant numbers of alveolar macrophages, including directly infected ones, present within the tissues. THP1 cells presented HLA-I viral peptides derived predominantly from internal proteins. Primary dendritic cells presented predominantly viral envelope-derived HLA class II peptides following phagocytosis of apoptotic infected cells. The most frequent viral source protein for HLA-I and -II was matrix 1 protein (M1). This work confirms that internal influenza proteins, particularly M1, are a rich source of CD4+ and CD8+ T cell epitopes. Moreover, we demonstrate the utility of two ex-vivo fully human infection models which enable direct HLA-I and -II immunopeptide identification without significant viral tropism limitations. Application of this epitope discovery strategy in a clinical setting will provide more certainty in rational vaccine design against influenza and other emergent viruses.
Assuntos
Antígenos Virais/imunologia , Epitopos de Linfócito T/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A/imunologia , Proteínas Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Técnicas In Vitro , Proteômica/métodosRESUMO
We have developed a new method for measuring mass dependent Si isotope fractionation via critical mixture double-spiking. Samples need to be spiked before column chemistry to guarantee full equilibrium between the sample and double-spike (29Si-30Si spike). An iterative addition of the double-spike to the sample, usually 2-4 times, is needed to generate a solution very close to the critically spiked mixture. We use a double-pass cyclonic quartz spray chamber, as it gives the highest signal-to-noise ratio. In conjunction with 6 µg ml-1 Si solution to yield intense Si isotope beams, this setup results in an â¼25 V (with 1011 Ω resistor) signal on 28Si+, while on-peak noise is less than 0.06 V. A typical sample analysis comprises 8 repeats (n = 8) of an individual sample measurement (for each repeat n = 1, 168 second analysis time) normalised to bracketing measurements of critically double-spiked NIST SRM 8546 (commonly known as NBS28). Each of these n = 8 analyses consumes about 13 µg of sample Si and yields a mean δ 30/28Si with a precision of approximately ±0.03 (2 s.e., 2 × standard error of the mean). Over a 16 month period, the reproducibility of the 11 mean δ 30/28Si values of such n = 8 analyses of the silicate reference material BHVO-2 is ±0.03 (2 s.d., 2 × standard deviation), which is 2 to 8 times better than the long-term reproducibility of traditional Si isotope measurement methods (â¼±0.1, 2 s.d., δ 30/28Si). This agreement between the long-term and short-term variability illustrates that the data sample the same population over the long and short terms, i.e., there is no scatter on the timescale of 16 months additional to what we observe over twenty hours (the typical timescale in one analytical session). Thus, for any set of n repeats, including n >8, their 2 s.e. should prove a useful metric of the reproducibility of their mean. Three international geological reference materials and a Si isotope reference material, diatomite, were characterised via the critical mixture double-spiking technique. Our results, expressed as δ 30/28SiNBS28, for BHVO-2 (-0.276 ± 0.011, 2 s.e., n = 94), BIR-1 (-0.321 ± 0.025, 2 s.e., n = 27), JP-1 (-0.273 ± 0.030, 2 s.e., n = 19) and diatomite (1.244 ± 0.025, 2 s.e., n = 20), are consistent with literature data, i.e., within the error range, but much more precise.
RESUMO
Oesophageal adenocarcinoma (OAC) has a relatively poor long-term survival and limited treatment options. Promising targets for immunotherapy are short peptide neoantigens containing tumour mutations, presented to cytotoxic T-cells by human leucocyte antigen (HLA) molecules. Despite an association between putative neoantigen abundance and therapeutic response across cancers, immunogenic neoantigens are challenging to identify. Here we characterized the mutational and immunopeptidomic landscapes of tumours from a cohort of seven patients with OAC. We directly identified one HLA-I presented neoantigen from one patient, and report functional T-cell responses from a predicted HLA-II neoantigen in a second patient. The predicted class II neoantigen contains both HLA I and II binding motifs. Our exploratory observations are consistent with previous neoantigen studies in finding that neoantigens are rarely directly observed, and an identification success rate following prediction in the order of 10%. However, our identified putative neoantigen is capable of eliciting strong T-cell responses, emphasizing the need for improved strategies for neoantigen identification.
Assuntos
Adenocarcinoma , Antígenos de Neoplasias , Humanos , Antígenos de Neoplasias/genética , Antígenos de Histocompatibilidade Classe I , Linfócitos T Citotóxicos , Antígenos HLA , Antígenos de Histocompatibilidade Classe II , ImunoterapiaRESUMO
Antigen processing is an immunological mechanism by which intracellular peptides are transported to the cell surface while bound to Major Histocompatibility Complex molecules, where they can be surveyed by circulating CD8+ or CD4+ T-cells, potentially triggering an immunological response. The antigen processing pathway is a complex multistage filter that refines a huge pool of potential peptide ligands derived from protein degradation into a smaller ensemble for surface presentation. Each stage presents unique challenges due to the number of ligands, the polymorphic nature of MHC and other protein constituents of the pathway and the nature of the interactions between them. Predicting the ensemble of displayed peptide antigens, as well as their immunogenicity, is critical for improving T cell vaccines against pathogens and cancer. Our predictive abilities have always been hindered by an incomplete empirical understanding of the antigen processing pathway. In this review, we highlight the role of computational and structural approaches in improving our understanding of antigen processing, including structural biology, computer simulation, and machine learning techniques, with a particular focus on the MHC-I pathway.
Assuntos
Apresentação de Antígeno , Peptídeos , Ligantes , Simulação por Computador , Peptídeos/metabolismo , BiologiaRESUMO
It has long been recognized that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and, by inference, the primordial disk from which they formed. However, it is not known whether the notable volatile depletions of planetary bodies are a consequence of accretion or inherited from prior nebular fractionation. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate. Here we develop an analytical approach that corrects a major cause of measurement inaccuracy inherent in conventional methods, and show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour, followed by vapour escape during accretionary growth of planetesimals, generates appropriate residual compositions. Our modelling implies that the isotopic compositions of magnesium, silicon and iron, and the relative abundances of the major elements of Earth and other planetary bodies, are a natural consequence of substantial (about 40 per cent by mass) vapour loss from growing planetesimals by this mechanism.
RESUMO
Human leukocyte antigen (HLA) class I allotypes vary in their ability to present peptides in the absence of tapasin, an essential component of the peptide loading complex. We quantified tapasin dependence of all allotypes that are common in European and African Americans (n = 97), which revealed a broad continuum of values. Ex vivo examination of cytotoxic T cell responses to the entire HIV-1 proteome from infected subjects indicates that tapasin-dependent allotypes present a more limited set of distinct peptides than do tapasin-independent allotypes, data supported by computational predictions. This suggests that variation in tapasin dependence may impact the strength of the immune responses by altering peptide repertoire size. In support of this model, we observed that individuals carrying HLA class I genotypes characterized by greater tapasin independence progress more slowly to AIDS and maintain lower viral loads, presumably due to increased breadth of peptide presentation. Thus, tapasin dependence level, like HLA zygosity, may serve as a means to restrict or expand breadth of the HLA-I peptide repertoire across humans, ultimately influencing immune responses to pathogens and vaccines.
Assuntos
Apresentação de Antígeno/genética , Infecções por HIV , Antígenos de Histocompatibilidade Classe I , Proteínas de Membrana Transportadoras , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismo , Linfócitos T Citotóxicos/imunologia , Carga Viral/genética , Carga Viral/imunologiaRESUMO
Transmissible cancers are malignant cells that can spread between individuals of a population, akin to both a parasite and a mobile graft. The survival of the Tasmanian devil, the largest remaining marsupial carnivore, is threatened by the remarkable emergence of two independent lineages of transmissible cancer, devil facial tumour (DFT) 1 and devil facial tumour 2 (DFT2). To aid the development of a vaccine and to interrogate how histocompatibility barriers can be overcome, we analysed the peptides bound to major histocompatibility complex class I (MHC-I) molecules from Tasmanian devil cells and representative cell lines of each transmissible cancer. Here, we show that DFT1 + IFN-γ and DFT2 cell lines express a restricted repertoire of MHC-I allotypes compared with fibroblast cells, potentially reducing the breadth of peptide presentation. Comparison of the peptidomes from DFT1 + IFNγ, DFT2 and host fibroblast cells demonstrates a dominant motif, despite differences in MHC-I allotypes between the cell lines, with preference for a hydrophobic leucine residue at position 3 and position Ω of peptides. DFT1 and DFT2 both present peptides derived from neural proteins, which reflects a shared cellular origin that could be exploited for vaccine design. These results suggest that polymorphisms in MHC-I molecules between tumours and host can be 'hidden' by a common peptide motif, providing the potential for permissive passage of infectious cells and demonstrating complexity in mammalian histocompatibility barriers.
Assuntos
Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/imunologia , Neoplasias Faciais/imunologia , Imunoterapia/métodos , Marsupiais/imunologia , Células Neoplásicas Circulantes/patologia , Peptídeos/metabolismo , Motivos de Aminoácidos/genética , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Histocompatibilidade , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/genética , Polimorfismo Genético , Ligação ProteicaRESUMO
The last decade has seen widespread adoption of triple quadrupole-based inductively coupled plasma-tandem mass spectrometry (ICPMS/MS) technique using a collision/reaction cell in combination with a precell bandpass mass analyzer to measure isotopes otherwise masked by spectral interferences. High-precision isotope ratio analysis containing such isotopes would benefit from a similar capability on a multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) platform, but using a quadrupole-based precell mass analyzer for MC-ICPMS/MS has several limitations. To overcome these limitations, we developed a novel precell mass analyzer for MC-ICPMS/MS using sector field technology. The new precell mass analyzer, comprising two Wien filters and a selection aperture, and a hexapole collision/reaction cell were integrated together in a single module and added to the commercially available Thermo Scientific Neptune XT MC-ICPMS to create a prototype MC-ICPMS/MS we named Vienna. Vienna was proven to retain the same performance of the base MC-ICPMS in terms of sensitivity, accuracy, and precision. Using the Vienna mass filter to eliminate Ar-based species, the abundance sensitivity achievable was equivalent to TIMS at mass 237.05, which was used to accurately determine the low 236U/238U isotope ratio of the uranium reference material IRMM184 (certified value, 1.2446 × 10-7). The performance of Vienna was then tested for a variety of geoscience applications that were expected to benefit from MC-ICPMS/MS technique, including Ca, K, Si, and in situ Rb/Sr dating by laser ablation.
Assuntos
Isótopos , Espectrometria de Massas , Análise EspectralRESUMO
We document the utility for in situ Rb-Sr dating of a one-of-a-kind tribrid mass spectrometer, 'Proteus', coupled to a UV laser ablation system. Proteus combines quadrupole mass-filter, collision cell and sector magnet with a multicollection inductively-coupled plasma mass spectrometer (CC-MC-ICPMS/MS). Compared to commercial, single collector, tribrid inductively-coupled plasma mass spectrometers (CC-ICPMS/MS) Proteus has enhanced ion transmission and offers simultaneous collection of all Sr isotopes using an array of Faraday cups. These features yield improved precision in measured 87Sr/86Sr ratios, for a given mass of Sr analysed, approximately a factor of 25 in comparison to the Thermo Scientific™ iCAP TQ™ operated under similar conditions. Using SF6 as a reaction gas on Proteus, measurements of Rb-doped NIST SRM (standard reference material) 987 solutions, with Rb/Sr ratios from 0.01-100, yield 87Sr/86Sr that are indistinguishable from un-doped NIST SRM 987, demonstrating quantitative 'chemical resolution' of Rb from Sr. We highlight the importance of mass-filtering before the collision cell for laser ablation 87Sr/86Sr analysis, using an in-house feldspar standard and a range of glass reference materials. By transmitting only those ions with mass-to-charge ratios 82-92 u/e into the collision cell, we achieve accurate 87Sr/86Sr measurements without any corrections for atomic or polyatomic isobaric interferences. Without the pre-cell mass-filtering, measured in situ 87Sr/86Sr ratios are inaccurate. Combining in situ measurements of Rb/Sr and radiogenic Sr isotope ratios we obtain mineral isochrons. We utilise a sample from the well-dated Dartmoor granite (285 ± 1 Ma) as a calibrant for our in situ ages and, using the same conditions, produce accurate Rb-Sr isochron ages for samples of the Fish Canyon tuff (28 ± 2 Ma) and Shap granite pluton (397 ± 1 Ma). Analysing the same Dartmoor granite sample using identical laser conditions and number of spot analyses using the Thermo Scientific™ iCAP TQ™ yielded an isochron slope 5× less precise than Proteus. We use an uncertainty model to illustrate the advantage of using Proteus over single collector CC-ICPMS/MS for in situ Rb-Sr dating. The results of this model show that the improvement is most marked for samples that have low Rb/Sr (<10) or are young (<100 Ma). We also report the first example of an in situ, internal Rb-Sr isochron from a single potassium-feldspar grain. Using a sample from the Shap granite, we obtained accurate age and initial 87Sr/86Sr with 95% confidence intervals of ±1.5% and ±0.03% respectively. Such capabilities offer new opportunities in geochronological studies.
RESUMO
Changing conditions on the Earth's surface can have a remarkable influence on the composition of its overwhelmingly more massive interior. The global distribution of uranium is a notable example. In early Earth history, the continental crust was enriched in uranium. Yet after the initial rise in atmospheric oxygen, about 2.4 billion years ago, the aqueous mobility of oxidized uranium resulted in its significant transport to the oceans and, ultimately, by means of subduction, back to the mantle. Here we explore the isotopic characteristics of this global uranium cycle. We show that the subducted flux of uranium is isotopically distinct, with high (238)U/(235)U ratios, as a result of alteration processes at the bottom of an oxic ocean. We also find that mid-ocean-ridge basalts (MORBs) have (238)U/(235)U ratios higher than does the bulk Earth, confirming the widespread pollution of the upper mantle with this recycled uranium. Although many ocean island basalts (OIBs) are argued to contain a recycled component, their uranium isotopic compositions do not differ from those of the bulk Earth. Because subducted uranium was probably isotopically unfractionated before full oceanic oxidation, about 600 million years ago, this observation reflects the greater antiquity of OIB sources. Elemental and isotope systematics of uranium in OIBs are strikingly consistent with previous OIB lead model ages, indicating that these mantle reservoirs formed between 2.4 and 1.8 billion years ago. In contrast, the uranium isotopic composition of MORB requires the convective stirring of recycled uranium throughout the upper mantle within the past 600 million years.
RESUMO
CD4+ T-cells recognize peptide antigens, in the context of human leukocyte antigen (HLA) class II molecules (HLA-II), which through peptide-flanking residues (PFRs) can extend beyond the limits of the HLA binding. The role of the PFRs during antigen recognition is not fully understood; however, recent studies have indicated that these regions can influence T-cell receptor (TCR) affinity and pHLA-II stability. Here, using various biochemical approaches including peptide sensitivity ELISA and ELISpot assays, peptide-binding assays and HLA-II tetramer staining, we focused on CD4+ T-cell responses against a tumor antigen, 5T4 oncofetal trophoblast glycoprotein (5T4), which have been associated with improved control of colorectal cancer. Despite their weak TCR-binding affinity, we found that anti-5T4 CD4+ T-cells are polyfunctional and that their PFRs are essential for TCR recognition of the core bound nonamer. The high-resolution (1.95 Å) crystal structure of HLA-DR1 presenting the immunodominant 20-mer peptide 5T4111-130, combined with molecular dynamic simulations, revealed how PFRs explore the HLA-proximal space to contribute to antigen reactivity. These findings advance our understanding of what constitutes an HLA-II epitope and indicate that PFRs can tune weak affinity TCR-pHLA-II interactions.
Assuntos
Epitopos/imunologia , Antígeno HLA-DR1/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cristalografia por Raios X , Epitopos/química , Epitopos/metabolismo , Antígeno HLA-DR1/química , Antígeno HLA-DR1/imunologia , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de ProteínaRESUMO
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a major human pandemic. Germline-encoded mycolyl lipid-reactive (GEM) T cells are donor-unrestricted and recognize CD1b-presented mycobacterial mycolates. However, the molecular requirements governing mycolate antigenicity for the GEM T cell receptor (TCR) remain poorly understood. Here, we demonstrate CD1b expression in TB granulomas and reveal a central role for meromycolate chains in influencing GEM-TCR activity. Meromycolate fine structure influences T cell responses in TB-exposed individuals, and meromycolate alterations modulate functional responses by GEM-TCRs. Computational simulations suggest that meromycolate chain dynamics regulate mycolate head group movement, thereby modulating GEM-TCR activity. Our findings have significant implications for the design of future vaccines that target GEM T cells.
Assuntos
Antígenos CD1/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tuberculose/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Antígenos CD1/química , Antígenos CD1/genética , Expressão Gênica , Granuloma/imunologia , Granuloma/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Humanos , Imuno-Histoquímica , Ativação Linfocitária/imunologia , Modelos Moleculares , Conformação Molecular , Ácidos Micólicos/química , Ácidos Micólicos/metabolismo , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Tuberculose/microbiologiaRESUMO
Endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 process N-terminally extended antigenic precursors for optimal loading onto major histocompatibility complex class I (MHC I) molecules. We and others have demonstrated that ERAP1 processes peptides bound to MHC I, but the underlying mechanism is unknown. To this end, we utilized single-chain trimers (SCT) of the ovalbumin-derived epitope SIINFEKL (SL8) tethered to the H2-Kb MHC I determinant from mouse and introduced three substitutions, E63A, K66A, and W167A, at the A-pocket of the peptide-binding groove in the MHC I heavy chain, which interact with the N termini of peptides. These variants significantly decreased SL8-presenting SCT at the cell surface in the presence of ERAP1, but did not affect overall SCT expression, indicating that ERAP1 trims the SL8 N terminus. Comparison of the X-ray crystal structures of WT and three variant SCTs revealed only minor perturbations of the peptide-binding domain in the variants. However, molecular dynamics simulations suggested that SL8 can dissociate partially within a sub-microsecond timescale, exposing its N terminus to the solvent. We also found that the C terminus of MHC I-bound SL8 remains deeply buried in the F-pocket of MHC I. Furthermore, free-energy calculations revealed that the three SCT variants exhibit lower free-energy barriers of N terminus dissociation than the WT Kb Taken together, our results are consistent with a previously observed model in which the partial dissociation of bound peptides from MHC I exposes their N terminus to trimming by ERAP1, whereas their C terminus is anchored at the F-pocket.
Assuntos
Aminopeptidases/metabolismo , Epitopos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Aminopeptidases/química , Apresentação de Antígeno , Cristalografia por Raios X , Epitopos/química , Células HeLa , Antígenos de Histocompatibilidade Classe I/química , Humanos , Antígenos de Histocompatibilidade Menor/química , Modelos Moleculares , Conformação Proteica , Domínios ProteicosRESUMO
Invariant NKT (iNKT) cells in healthy people express iNKT-TCRs with widely varying affinities for CD1d, suggesting different roles for high- and low-affinity iNKT clones in immune regulation. However, the functional implications of this heterogeneity have not yet been determined. Functionally aberrant iNKT responses have been previously demonstrated in different autoimmune diseases, including human type 1 diabetes, but their relationship to changes in the iNKT clonal repertoire have not been addressed. In this study, we directly compared the clonal iNKT repertoire of people with recent onset type 1 diabetes and age- and gender-matched healthy controls with regard to iNKT-TCR affinity and cytokine production. Our results demonstrate a selective loss of clones expressing high-affinity iNKT-TCRs from the iNKT repertoire of people with type 1 diabetes. Furthermore, this bias in the clonal iNKT repertoire in type 1 diabetes was associated with increased GM-CSF, IL-4, and IL-13 cytokine secretion among Ag-stimulated low-affinity iNKT clones. Thus, qualitative changes of the clonal iNKT repertoire with the potential to affect the regulatory function of this highly conserved T cell population are already established at the early stages in type 1 diabetes. These findings may inform future rationales for the development of iNKT-based therapies aiming to restore immune tolerance in type 1 diabetes.
Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Adolescente , Adulto , Antígenos CD1d/genética , Células Clonais , Diabetes Mellitus Tipo 1/fisiopatologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Interleucina-13/imunologia , Interleucina-4/imunologia , Receptores de Antígenos de Linfócitos T/deficiência , Adulto JovemRESUMO
Cluster of differentiation 1c (CD1c)-dependent self-reactive T cells are abundant in human blood, but self-antigens presented by CD1c to the T-cell receptors of these cells are poorly understood. Here we present a crystal structure of CD1c determined at 2.4 Å revealing an extended ligand binding potential of the antigen groove and a substantially different conformation compared with known CD1c structures. Computational simulations exploring different occupancy states of the groove reenacted these different CD1c conformations and suggested cholesteryl esters (CE) and acylated steryl glycosides (ASG) as new ligand classes for CD1c. Confirming this, we show that binding of CE and ASG to CD1c enables the binding of human CD1c self-reactive T-cell receptors. Hence, human CD1c adopts different conformations dependent on ligand occupancy of its groove, with CE and ASG stabilizing CD1c conformations that provide a footprint for binding of CD1c self-reactive T-cell receptors.
Assuntos
Antígenos CD1/imunologia , Ésteres do Colesterol/metabolismo , Glicoproteínas/imunologia , Linfócitos T/imunologia , Antígenos CD1/química , Antígenos CD1d , Glicoproteínas/química , Humanos , Simulação de Dinâmica Molecular , Conformação ProteicaRESUMO
Major histocompatibility complex class I molecules (MHC I) help protect jawed vertebrates by binding and presenting immunogenic peptides to cytotoxic T lymphocytes. Peptides are selected from a large diversity present in the endoplasmic reticulum. However, only a limited number of peptides complement the polymorphic MHC specificity determining pockets in a way that leads to high-affinity peptide binding and efficient antigen presentation. MHC I molecules possess an intrinsic ability to discriminate between peptides, which varies in efficiency between allotypes, but the mechanism of selection is unknown. Elucidation of the selection mechanism is likely to benefit future immune-modulatory therapies. Evidence suggests peptide selection involves transient adoption of alternative, presumably higher energy conformations than native peptide-MHC complexes. However, the instability of peptide-receptive MHC molecules has hindered characterization of such conformational plasticity. To investigate the dynamic nature of MHC, we refolded MHC proteins with peptides that can be hydrolyzed by UV light and thus released. We compared the resultant peptide-receptive MHC molecules with non-hydrolyzed peptide-loaded MHC complexes by monitoring the exchange of hydrogen for deuterium in solution. We found differences in hydrogen-deuterium exchange between peptide-loaded and peptide-receptive molecules that were negated by the addition of peptide to peptide-receptive MHC molecules. Peptide hydrolysis caused significant increases in hydrogen-deuterium exchange in sub-regions of the peptide-binding domain and smaller increases elsewhere, including in the α3 domain and the non-covalently associated ß2-microglobulin molecule, demonstrating long-range dynamic communication. Comparing two MHC allotypes revealed allotype-specific differences in hydrogen-deuterium exchange, consistent with the notion that MHC I plasticity underpins peptide selection.
Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/química , Peptídeos/metabolismo , Dobramento de Proteína , Animais , Sítios de Ligação , Galinhas , Medição da Troca de Deutério , Antígenos de Histocompatibilidade Classe I/metabolismo , Ligação Proteica , Conformação Proteica , Raios UltravioletaRESUMO
In this issue of Immunity, Dong et al. (2009) describe the protein crystal structure heterodimer of tapasin and ERp57, which helps visualize the function of these proteins in loading of peptide antigens onto MHC class I molecules as part of the peptide loading complex within the endoplasmic reticulum.
Assuntos
Retículo Endoplasmático/fisiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Proteínas de Membrana Transportadoras/química , Peptídeos/fisiologia , Isomerases de Dissulfetos de Proteínas/química , Humanos , Proteínas de Membrana Transportadoras/fisiologia , Modelos Biológicos , Complexos Multiproteicos/químicaRESUMO
Invariant NKT cells (iNKT) are potent immunoregulatory T cells that recognize CD1d via a semi-invariant TCR (iNKT-TCR). Despite the knowledge of a defective iNKT pool in several autoimmune conditions, including rheumatoid arthritis (RA), a clear understanding of the intrinsic mechanisms, including qualitative and structural changes of the human iNKT repertoire at the earlier stages of autoimmune disease, is lacking. In this study, we compared the structure and function of the iNKT repertoire in early RA patients with age- and gender-matched controls. We analyzed the phenotype and function of the ex vivo iNKT repertoire as well as CD1d Ag presentation, combined with analyses of a large panel of ex vivo sorted iNKT clones. We show that circulating iNKTs were reduced in early RA, and their frequency was inversely correlated to disease activity score 28. Proliferative iNKT responses were defective in early RA, independent of CD1d function. Functional iNKT alterations were associated with a skewed iNKT-TCR repertoire with a selective reduction of high-affinity iNKT clones in early RA. Furthermore, high-affinity iNKTs in early RA exhibited an altered functional Th profile with Th1- or Th2-like phenotype, in treatment-naive and treated patients, respectively, compared with Th0-like Th profiles exhibited by high-affinity iNKTs in controls. To our knowledge, this is the first study to provide a mechanism for the intrinsic qualitative defects of the circulating iNKT clonal repertoire in early RA, demonstrating defects of iNKTs bearing high-affinity TCRs. These defects may contribute to immune dysregulation, and our findings could be exploited for future therapeutic intervention.