Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Brain Behav Immun ; 47: 131-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25585137

RESUMO

Traumatic brain injury (TBI) is induced by mechanical forces which initiate a cascade of secondary injury processes, including inflammation. Therapies which resolve the inflammatory response may promote neural repair without exacerbating the primary injury. Specific derivatives of omega-3 fatty acids loosely grouped as specialized pro-resolving lipid mediators (SPMs) and termed resolvins promote the active resolution of inflammation. In the current study, we investigate the effect of two resolvin molecules, RvE1 and AT-RvD1, on post-traumatic sleep and functional outcome following diffuse TBI through modulation of the inflammatory response. Adult, male C57BL/6 mice were injured using a midline fluid percussion injury (mFPI) model (6-10min righting reflex time for brain-injured mice). Experimental groups included mFPI administered RvE1 (100ng daily), AT-RvD1 (100ng daily), or vehicle (sterile saline) and counterbalanced with uninjured sham mice. Resolvins or saline were administered daily for seven consecutive days beginning 3days prior to TBI to evaluate proof-of-principle to improve outcome. Immediately following diffuse TBI, post-traumatic sleep was recorded for 24h post-injury. For days 1-7 post-injury, motor outcome was assessed by rotarod. Cognitive function was measured at 6days post-injury using novel object recognition (NOR). At 7days post-injury, microglial activation was quantified using immunohistochemistry for Iba-1. In the diffuse brain-injured mouse, AT-RvD1 treatment, but not RvE1, mitigated motor and cognitive deficits. RvE1 treatment significantly increased post-traumatic sleep in brain-injured mice compared to all other groups. RvE1 treated mice displayed a higher proportion of ramified microglia and lower proportion of activated rod microglia in the cortex compared to saline or AT-RvD1 treated brain-injured mice. Thus, RvE1 treatment modulated post-traumatic sleep and the inflammatory response to TBI, albeit independently of improvement in motor and cognitive outcome as seen in AT-RvD1-treated mice. This suggests AT-RvD1 may impart functional benefit through mechanisms other than resolution of inflammation alone.


Assuntos
Lesões Encefálicas/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Microglia/metabolismo , Sono/fisiologia , Animais , Lesões Encefálicas/fisiopatologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Ácido Eicosapentaenoico/farmacologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Sono/efeitos dos fármacos
2.
J Neurosurg Pediatr ; 22(1): 22-30, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29676680

RESUMO

OBJECTIVE Experimental traumatic brain injury (TBI) models hold significant validity to the human condition, with each model replicating a subset of clinical features and symptoms. TBI is the leading cause of mortality and morbidity in children and teenagers; thus, it is critical to develop preclinical models of these ages to test emerging treatments. Midline fluid percussion injury (FPI) might best represent mild and diffuse clinical brain injury because of the acute behavioral deficits, the late onset of behavioral morbidities, and the absence of gross histopathology. In this study, the authors sought to adapt a midline FPI to postnatal day (PND) 17 and 35 rats. The authors hypothesized that scaling the craniectomy size based on skull dimensions would result in a reproducible injury comparable to the standard midline FPI in adult rats. METHODS PND17 and PND35 rat skulls were measured, and trephines were scaled based on skull size. Custom trephines were made. Rats arrived on PND10 and were randomly assigned to one of 3 cohorts: PND17, PND35, and 2 months old. Rats were subjected to midline FPI, and the acute injury was characterized. The right reflex was recorded, injury-induced apnea was measured, injury-induced seizure was noted, and the brains were immediately examined for hematoma. RESULTS The authors' hypothesis was supported; scaling the trephines based on skull size led to a reproducible injury in the PND17 and PND35 rats that was comparable to the injury in a standard 2-month-old adult rat. The midline FPI suppressed the righting reflex in both the PND17 and PND35 rats. The injury induced apnea in PND17 rats that lasted significantly longer than that in PND35 and 2-month-old rats. The injury also induced seizures in 73% of PND17 rats compared with 9% of PND35 rats and 0% of 2-month-old rats. There was also a significant relationship between the righting reflex time and presence of seizure. Both PND17 and PND35 rats had visible hematomas with an intact dura, indicative of diffuse injury comparable to the injury observed in 2-month-old rats. CONCLUSIONS With these procedures, it becomes possible to generate brain-injured juvenile rats (pediatric [PND17] and adolescent [PND35]) for studies of injury-induced pathophysiology and behavioral deficits, for which rational therapeutic interventions can be implemented.


Assuntos
Lesões Encefálicas Traumáticas/etiologia , Modelos Animais de Doenças , Percussão/métodos , Trepanação/métodos , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Lesões Encefálicas Traumáticas/complicações , Percussão/instrumentação , Ratos , Ratos Sprague-Dawley , Reflexo de Endireitamento/fisiologia , Convulsões/etiologia
3.
Exp Neurol ; 261: 434-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24931226

RESUMO

Juvenile traumatic brain injury (TBI) leaves survivors facing a potential lifetime of cognitive, somatic and emotional symptoms. A recent study published in Experimental Neurology (Kamper et al., 2013) explored the chronic consequences of focal brain injury induced in the juvenile animal, extending their previous observations out to 6months post-injury. The results demonstrate transient, persistent, and late onset behavioral dysfunction, which are associated with subtle evidence for enduring histopathology. In line with investigations about chronic traumatic encephalopathy from brain injury initiated in the adult, juvenile TBI establishes signs of a chronic brain disorder, with unique considerations relative to ongoing developmental processes. This commentary discusses the challenges in evaluating aging with injury in the juvenile population, the current methods of juvenile TBI, and what can be anticipated for the future of the field.


Assuntos
Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Lesão Encefálica Crônica/etiologia , Lesão Encefálica Crônica/patologia , Neurônios/patologia , Animais , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA