Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Org Chem ; 88(4): 2089-2094, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36745853

RESUMO

A copper-mediated radiobromination of (hetero)aryl boronic pinacol esters is described. Cyclotron-produced [76/77Br]bromide was isolated using an anion exchange cartridge, wherein the pre-equilibration and elution solutions played a critical role in downstream deboro-bromination. The bromination tolerates a broad range of functional groups, labeling molecules with ranging electronic and steric effects. Bologically active radiopharmaceuticals were synthesized, including two radiobrominated inhibitors of poly ADP ribose polymerase, a clinically relevant chemotherapeutic target for ovarian, breast, and prostate cancers.


Assuntos
Cobre , Ésteres , Boro , Glicóis
2.
Inorg Chem ; 60(20): 15223-15232, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606252

RESUMO

The therapeutic potential of the Meitner-Auger- and conversion-electron emitting radionuclide 119Sb remains unexplored because of the difficulty of incorporating it into biologically targeted compounds. To address this challenge, we report the development of 119Sb production from electroplated tin cyclotron targets and its complexation by a novel trithiol chelate. The chelation reaction occurs in harsh solvent conditions even in the presence of large quantities of tin, which are necessary for production on small, low energy (16 MeV) cyclotrons. The 119Sb-trithiol complex has high stability and can be purified by HPLC. The third generation trithiol chelate and the analogous stable natSb-trithiol compound were synthesized and characterized, including by single-crystal X-ray diffraction analyses.

3.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946596

RESUMO

Background: Radionuclides emitting Auger electrons (AEs) with low (0.02-50 keV) energy, short (0.0007-40 µm) range, and high (1-10 keV/µm) linear energy transfer may have an important role in the targeted radionuclide therapy of metastatic and disseminated disease. Erbium-165 is a pure AE-emitting radionuclide that is chemically matched to clinical therapeutic radionuclide 177Lu, making it a useful tool for fundamental studies on the biological effects of AEs. This work develops new biomedical cyclotron irradiation and radiochemical isolation methods to produce 165Er suitable for targeted radionuclide therapeutic studies and characterizes a new such agent targeting prostate-specific membrane antigen. Methods: Biomedical cyclotrons proton-irradiated spot-welded Ho(m) targets to produce 165Er, which was isolated via cation exchange chromatography (AG 50W-X8, 200-400 mesh, 20 mL) using alpha-hydroxyisobutyrate (70 mM, pH 4.7) followed by LN2 (20-50 µm, 1.3 mL) and bDGA (50-100 µm, 0.2 mL) extraction chromatography. The purified 165Er was radiolabeled with standard radiometal chelators and used to produce and characterize a new AE-emitting radiopharmaceutical, [165Er]PSMA-617. Results: Irradiation of 80-180 mg natHo targets with 40 µA of 11-12.5 MeV protons produced 165Er at 20-30 MBq·µA-1·h-1. The 4.9 ± 0.7 h radiochemical isolation yielded 165Er in 0.01 M HCl (400 µL) with decay-corrected (DC) yield of 64 ± 2% and a Ho/165Er separation factor of (2.8 ± 1.1) · 105. Radiolabeling experiments synthesized [165Er]PSMA-617 at DC molar activities of 37-130 GBq·µmol-1. Conclusions: A 2 h biomedical cyclotron irradiation and 5 h radiochemical separation produced GBq-scale 165Er suitable for producing radiopharmaceuticals at molar activities satisfactory for investigations of targeted radionuclide therapeutics. This will enable fundamental radiation biology experiments of pure AE-emitting therapeutic radiopharmaceuticals such as [165Er]PSMA-617, which will be used to understand the impact of AEs in PSMA-targeted radionuclide therapy of prostate cancer.


Assuntos
Dipeptídeos/química , Érbio/química , Compostos Heterocíclicos com 1 Anel/química , Antígeno Prostático Específico/química , Neoplasias da Próstata/radioterapia , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Humanos , Masculino
4.
Eur J Nucl Med Mol Imaging ; 45(1): 110-120, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28821924

RESUMO

PURPOSE: Nivolumab is a human monoclonal antibody specific for programmed cell death-1 (PD-1), a negative regulator of T-cell activation and response. Acting as an immune checkpoint inhibitor, nivolumab binds to PD-1 expressed on the surface of many immune cells and prevents ligation by its natural ligands. Nivolumab is only effective in a subset of patients, and there is limited evidence supporting its use for diagnostic, monitoring, or stratification purposes. METHODS: 89Zr-Df-nivolumab was synthesized to map the biodistribution of PD-1-expressing tumor infiltrating T-cells in vivo using a humanized murine model of lung cancer. The tracer was developed by radiolabeling the antibody with the positron emitter zirconium-89 (89Zr). Imaging results were validated by ex vivo biodistribution studies, and PD-1 expression was validated by immunohistochemistry. Data obtained from PET imaging were used to determine human dosimetry estimations. RESULTS: The tracer showed elevated binding to stimulated PD-1 expressing T-cells in vitro and in vivo. PET imaging of 89Zr-Df-nivolumab allowed for clear delineation of subcutaneous tumors through targeting of localized activated T-cells expressing PD-1 in the tumors and salivary glands of humanized A549 tumor-bearing mice. In addition to tumor uptake, salivary and lacrimal gland infiltration of T-cells was noticeably visible and confirmed via histological analysis. CONCLUSIONS: These data support our claim that PD-1-targeted agents allow for tumor imaging in vivo, which may assist in the design and development of new immunotherapies. In the future, noninvasive imaging of immunotherapy biomarkers may assist in disease diagnostics, disease monitoring, and patient stratification.


Assuntos
Anticorpos Monoclonais/farmacocinética , Infiltração Leucêmica/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Linfócitos T/metabolismo , Zircônio/química , Animais , Anticorpos Monoclonais/química , Células Cultivadas , Humanos , Infiltração Leucêmica/patologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nivolumabe , Receptor de Morte Celular Programada 1/metabolismo , Compostos Radiofarmacêuticos/síntese química , Distribuição Tecidual
5.
J Labelled Comp Radiopharm ; 61(9): 636-651, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29341227

RESUMO

Recent advances in molecular characterization of tumors have made possible the emergence of new types of cancer therapies where traditional cytotoxic drugs and nonspecific chemotherapy can be complemented with targeted molecular therapies. One of the main revolutionary treatments is the use of monoclonal antibodies (mAbs) that selectively target the disseminated tumor cells while sparing normal tissues. mAbs and related therapeutics can be efficiently radiolabeled with a wide range of radionuclides to facilitate preclinical and clinical studies. Non-invasive molecular imaging techniques, such as Positron Emission Tomography (PET), using radiolabeled mAbs provide useful information on the whole-body distribution of the biomolecules, which may enable patient stratification, diagnosis, selection of targeted therapies, evaluation of treatment response, and prediction of dose limiting tissue and adverse effects. In addition, when mAbs are labeled with therapeutic radionuclides, the combination of immunological and radiobiological cytotoxicity may result in enhanced treatment efficacy. The pharmacokinetic profile of antibodies demands the use of long half-life isotopes for longitudinal scrutiny of mAb biodistribution and precludes the use of well-stablished short half-life isotopes. Herein, we review the most promising PET radiometals with chemical and physical characteristics that make the appealing for mAb labeling, highlighting those with theranostic radioisotopes.


Assuntos
Anticorpos Monoclonais/química , Metais/química , Tomografia por Emissão de Pósitrons , Radioisótopos/química , Animais , Anticorpos Monoclonais/farmacocinética , Humanos , Marcação por Isótopo
6.
Bioconjug Chem ; 27(1): 179-88, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26646989

RESUMO

Radioisotopes of arsenic are of considerable interest to the field of nuclear medicine with unique nuclear and chemical properties making them well-suited for use in novel theranostic radiopharmaceuticals. However, progress must still be made in the production of isotopically pure radioarsenic and in its stable conjugation to biological targeting vectors. This work presents the production and irradiation of isotopically enriched (72)Ge(m) discs in an irrigation-cooled target system allowing for the production of isotopically pure (72)As with capability on the order of 10 GBq. A radiochemical separation procedure isolated the reactive trivalent radioarsenic in a small volume buffered aqueous solution, while reclaiming (72)Ge target material. The direct thiol-labeling of a monoclonal antibody resulted in a conjugate exhibiting exceptionally poor in vivo stability in a mouse model. This prompted further investigations to alternative radioarsenic labeling strategies, including the labeling of the dithiol-containing chelator dihydrolipoic acid, and thiol-modified mesoporous silica nanoparticles (MSN-SH). Radioarsenic-labeled MSN-SH showed exceptional in vivo stability toward dearsenylation.


Assuntos
Arsênio/química , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Nanomedicina Teranóstica/métodos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Ciclotrons , Germânio/química , Humanos , Marcação por Isótopo/métodos , Isótopos/química , Camundongos , Nanopartículas/química , Tomografia por Emissão de Pósitrons , Radioquímica/métodos , Radioisótopos/isolamento & purificação , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nucl Instrum Methods Phys Res B ; 386: 44-53, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28190909

RESUMO

Fe, Cu, and Al stacked foils were irradiated by 90 MeV protons at the Los Alamos Neutron Science Center's Isotope Production Facility to measure nuclear cross sections for the production of medically relevant isotopes, such as 52gMn, 54Mn, 48Cr, 55Co, 58mCo and 57Ni. The decay of radioactive isotopes produced during irradiation was monitored using high-purity germanium gamma spectroscopy over the months following irradiation. Proton fluence was determined using the natAl(p,x)22Na, natCu(p,x)62Zn natCu(p,x)65Zn, and natCu(p,x)56Co monitor reactions. Calculated cross sections were compared against literature values and theoretical TALYS predictions. Notably this work includes the first reported independent cross section measurements of natCu(p,x)58mCo and natCu(p,x)58gCo.

8.
Bioconjug Chem ; 26(10): 2118-24, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26317429

RESUMO

(52)Mn (t1/2 = 5.59 d, ß(+) = 29.6%, Eßave = 0.24 MeV) shows promise in positron emission tomography (PET) and in dual-modality manganese-enhanced magnetic resonance imaging (MEMRI) applications including neural tractography, stem cell tracking, and biological toxicity studies. The extension to bioconjugate application requires high-specific-activity (52)Mn in a state suitable for macromolecule labeling. To that end a (52)Mn production, purification, and labeling system is presented, and its applicability in preclinical, macromolecule PET is shown using the conjugate (52)Mn-DOTA-TRC105. (52)Mn is produced by 60 µA, 16 MeV proton irradiation of natural chromium metal pressed into a silver disc support. Radiochemical separation proceeds by strong anion exchange chromatography of the dissolved Cr target, employing a semiorganic mobile phase, 97:3 (v:v) ethanol:HCl (11 M, aqueous). The method is 62 ± 14% efficient (n = 7) in (52)Mn recovery, leading to a separation factor from Cr of (1.6 ± 1.0) × 10(6) (n = 4), and an average effective specific activity of 0.8 GBq/µmol (n = 4) in titration against DOTA. (52)Mn-DOTA-TRC105 conjugation and labeling demonstrate the potential for chelation applications. In vivo images acquired using PET/CT in mice bearing 4T1 xenograft tumors are presented. Peak tumor uptake is 18.7 ± 2.7%ID/g at 24 h post injection and ex vivo (52)Mn biodistribution validates the in vivo PET data. Free (52)Mn(2+) (as chloride or acetate) is used as a control in additional mice to evaluate the nontargeted biodistribution in the tumor model.


Assuntos
Marcação por Isótopo/métodos , Manganês/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Animais , Anticorpos Monoclonais/química , Cromo/química , Feminino , Compostos Heterocíclicos com 1 Anel/química , Imageamento por Ressonância Magnética/métodos , Manganês/farmacocinética , Camundongos Endogâmicos BALB C , Radioquímica/métodos , Radioisótopos/química , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Bioact Mater ; 19: 282-291, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35574055

RESUMO

Acute kidney injury (AKI) leads to unacceptably high mortality due to difficulties in timely intervention and less efficient renal delivery of therapeutic drugs. Here, a series of polyvinylpyrrolidone (PVP)-curcumin nanoparticles (PCurNP) are designed to meet the renal excretion threshold (∼45 kDa), presenting a controllable delivery nanosystem for kidney targeting. Renal accumulation of the relatively small nanoparticles, 89Zr-PCurNP M10 with the diameter between 5 and 8 nm, is found to be 1.7 times and 1.8 times higher than the accumulation of 89Zr-PCurNP M29 (20-50 nm) and M40 (20-50 nm) as revealed by PET imaging. Furthermore, serum creatinine analysis, kidney tissues histology, and tubular injury scores revealed that PCurNP M10 efficiently treated cisplatin-induced AKI. Herein, PCurNP offers a novel and simple strategy for precise PET image-guided drug delivery of renal protective materials.

10.
Front Chem ; 11: 1167783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179772

RESUMO

Introduction: 43Sc and 44gSc are both positron-emitting radioisotopes of scandium with suitable half-lives and favorable positron energies for clinical positron emission tomography (PET) imaging. Irradiation of isotopically enriched calcium targets has higher cross sections compared to titanium targets and higher radionuclidic purity and cross sections than natural calcium targets for reaction routes possible on small cyclotrons capable of accelerating protons and deuterons. Methods: In this work, we investigate the following production routes via proton and deuteron bombardment on CaCO3 and CaO target materials: 42Ca(d,n)43Sc, 43Ca(p,n)43Sc, 43Ca(d,n)44gSc, 44Ca(p,n)44gSc, and 44Ca(p,2n)43Sc. Radiochemical isolation of the produced radioscandium was performed with extraction chromatography using branched DGA resin and apparent molar activity was measured with the chelator DOTA. The imaging performance of 43Sc and 44gSc was compared with 18F, 68Ga, and 64Cu on two clinical PET/CT scanners. Discussion: The results of this work demonstrate that proton and deuteron bombardment of isotopically enriched CaO targets produce high yield and high radionuclidic purity 43Sc and 44gSc. Laboratory capabilities, circumstances, and budgets are likely to dictate which reaction route and radioisotope of scandium is chosen.

11.
Nucl Med Biol ; 122-123: 108352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37390607

RESUMO

Targeted Meitner-Auger Therapy (TMAT) has potential for personalized treatment thanks to its subcellular dosimetric selectivity, which is distinct from the dosimetry of ß- and α particle emission based Targeted Radionuclide Therapy (TRT). To date, most clinical and preclinical TMAT studies have used commercially available radionuclides. These studies showed promising results despite using radionuclides with theoretically suboptimal photon to electron ratios, decay kinetics, and electron emission spectra. Studies using radionuclides whose decay characteristics are considered more optimal are therefore important for evaluation of the full potential of Meitner-Auger therapy; 119Sb is among the best such candidates. In the present work, we develop radiochemical purification of 120Sb from irradiated natural tin targets for TMAT studies with 119Sb.


Assuntos
Antimônio , Elétrons , Antimônio/uso terapêutico , Radioquímica , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico
12.
Appl Radiat Isot ; 178: 109954, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607293

RESUMO

[11C]ER176 is a next generation PET radioligand for imaging 18 kDa translocator protein, a biomarker for neuroinflammation. The goal of this work was to investigate alternative strategies for the radiochemical synthesis, purification, and formulation of [11C]ER176. An optimized tri-solvent high-performance liquid chromatography (HPLC) protocol is described to separate the hydro-de-chlorinated byproduct from [11C]ER176. A newly implemented solid phase extraction work-up efficiently removed HPLC solvent while maintaining chemical purity and overall radiochemical yield and purity. This new HPLC purification and final formulation was completed within 40 min, providing 2.7 ± 0.5 GBq of [11C]ER176 at end of synthesis with 1400 ± 300 GBq/µmol molar activity while meeting all specifications for radiopharmaceutical quality control tests for human research use.


Assuntos
Radioisótopos de Carbono/química , Doenças Neuroinflamatórias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Cromatografia Líquida de Alta Pressão , Humanos , Controle de Qualidade , Compostos Radiofarmacêuticos/administração & dosagem , Extração em Fase Sólida , Espectrofotometria Ultravioleta
13.
Nucl Med Biol ; 96-97: 19-26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33725498

RESUMO

We report an extraction chromatography-based method via Actinide Resin for the isolation of radio-manganese from both natural chromium and isotopically enriched iron targets for cyclotron production of 52gMn and 51Mn. For the separation of 52gMn from natCr, a decay-corrected radiochemical yield of 83.7 ± 8.4% was achieved. For 51Mn from 54Fe, a decay-corrected radiochemical yield of 78 ± 11% was achieved. This automatable method efficiently isolates both radionuclides from accelerator target material.


Assuntos
Ciclotrons , Manganês , Tomografia por Emissão de Pósitrons , Radioquímica
14.
Neuroimage Clin ; 31: 102740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34182407

RESUMO

INTRODUCTION: Adults with Down syndrome are genetically predisposed to develop Alzheimer's disease and accumulate beta-amyloid plaques (Aß) early in life. While Aß has been heavily studied in Down syndrome, its relationship with neurofibrillary tau is less understood. The aim of this study was to evaluate neurofibrillary tau deposition in individuals with Down syndrome with varying levels of Aß burden. METHODS: A total of 161 adults with Down syndrome (mean age = 39.2 (8.50) years) and 40 healthy, non-Down syndrome sibling controls (43.2 (12.6) years) underwent T1w-MRI, [C-11]PiB and [F-18]AV-1451 PET scans. PET images were converted to units of standardized uptake value ratios (SUVrs). Aß burden was calculated using the amyloid load metric (AßL); a measure of global Aß burden that improves quantification from SUVrs by suppressing the nonspecific binding signal component and computing the specific Aß signal from all Aß-carrying voxels from the image. Regional tau was assessed using control-standardized AV-1451 SUVr. Control-standardized SUVrs were compared across Down syndrome groups of Aß-negative (A-) (AßL < 13.3), subthreshold A+ (13.3 ≤ AßL < 20) and conventionally A+ (AßL ≥ 20) individuals. The subthreshold A + group was identified as having significantly higher Aß burden compared to the A- group, but not high enough to satisfy a conventional A + classification. RESULTS: A large-sized association that survived adjustment for chronological age, mental age (assessed using the Peabody Picture Vocabulary Test), and imaging site was observed between AßL and AV-1451 within each Braak region (p < .05). The A + group showed significantly higher AV-1451 retention across all Braak regions compared to the A- and subthreshold A + groups (p < .05). The subthreshold A + group showed significantly higher AV-1451 retention in Braak regions I-III compared to an age-matched sample from the A- group (p < .05). DISCUSSION: These results show that even the earliest detectable Aß accumulation in Down syndrome is accompanied by elevated tau in the early Braak stage regions. This early detection of tau can help characterize the tau accumulation phase during preclinical Alzheimer's disease progression in Down syndrome and suggests that there may be a relatively narrow window after Aß accumulation begins to prevent the downstream cascade of events that leads to Alzheimer's disease.


Assuntos
Doença de Alzheimer , Amiloidose , Síndrome de Down , Adulto , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Síndrome de Down/complicações , Síndrome de Down/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Proteínas tau
15.
Nucl Med Biol ; 80-81: 32-36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31575457

RESUMO

INTRODUCTION: The radioisotopes of bromine are uniquely suitable radiolabels for small molecule theranostic radiopharmaceuticals but are of limited availability due to production challenges. Significantly improved methods were developed for the production and radiochemical isolation of clinical quality 76Br, 77Br, and 80mBr. The radiochemical quality of the radiobromine produced using these methods was tested through the synthesis of a novel 77Br-labeled inhibitor of poly (ADP-ribose) polymerase-1 (PARP-1), a DNA damage response protein. METHODS: 76Br, 77Br, and 80mBr were produced in high radionuclidic purity via the proton irradiation of novel isotopically-enriched Co76Se, Co77Se, and Co80Se intermetallic targets, respectively. Radiobromine was isolated through thermal chromatographic distillation in a vertical furnace assembly. The 77Br-labeled PARP inhibitor was synthesized via copper-mediated aryl boronic ester radiobromination. RESULTS: Cyclotron production yields were 103 ±â€¯10 MBq∙µA-1∙h-1 for 76Br, 88 ±â€¯10 MBq∙µA-1∙h-1 for 80mBr at 16 MeV and 17 ±â€¯1 MBq∙µA-1∙h-1 for 77Br at 13 MeV. Radiobromide isolation yields were 76 ±â€¯11% in a small volume of aqueous solution. The synthesized 77Br-labeled PARP-1 inhibitor had a measured apparent molar activity up to 700 GBq/µmol at end of synthesis. CONCLUSIONS: A novel selenium alloy target enabled clinical-scale production of 76Br, 77Br, and 80mBr with high apparent molar activities, which was used to for the production of a new 77Br-labeled inhibitor of PARP-1. ADVANCES IN KNOWLEDGE: New methods for the cyclotron production and isolation of radiobromine improved the production capacity of 77Br by a factor of three and 76Br by a factor of six compared with previous methods. IMPLICATIONS FOR PATIENT CARE: Preclinical translational research of 77Br-based Auger electron radiotherapeutics, such as those targeting PARP-1, will require the production of GBq-scale 77Br, which necessitates next-generation, high-yielding, isotopically-enriched cyclotron targets, such as the novel intermetallic Co77Se.


Assuntos
Radioisótopos de Bromo/química , Ciclotrons , Radioquímica/instrumentação , Indóis/química , Marcação por Isótopo
16.
Proteins ; 75(2): 404-12, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18831044

RESUMO

The interplay of short- and long-range interactions in protein structure and folding is poorly understood. This study focuses on the distribution of intramolecular contacts across different regions of the polypeptide chain in soluble single-domain proteins. We show that while the average number of intramolecular interactions per residue is similar across all regions of the sequence, the interaction counterparts are distributed nonrandomly. Two types of proteins are observed. The first class comprises structures that have the majority of their intramolecular contacts linking amino acids within the same region of the sequence (i.e., N-/C-terminal or intermediate portion of the chain). A second smaller class includes proteins that have extensive contacts between the N and C termini. Such extensive interactions involve primarily distal beta-strands and are detected via the NCR parameter, a descriptor of the number of contacts with interaction counterparts in specific regions of the sequence. In summary, the majority of single-domain proteins (first class) is dominated by short-range interactions between contiguous elements of secondary structure and has only sparse contacts among the N and C termini. This finding defies the common assumption that the chain termini, often spatially close in folded proteins, have to participate in a large number of mutual interactions. Finally, our results suggest that the C-terminal region of Class 2 proteins may be particularly effective at promoting folding upon completion of protein biosynthesis in the cell.


Assuntos
Proteínas/química , Sequência de Aminoácidos , Simulação por Computador , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas/metabolismo
17.
Sci Rep ; 9(1): 10658, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337833

RESUMO

The present study describes a novel method for the low energy cyclotron production and radiochemical isolation of no-carrier-added 132/135La3+ from bulk natBa. This separation strategy combines precipitation and single-column extraction chromatography to afford an overall radiochemical yield (92 ± 2%) and apparent molar activity (22 ± 4 Mbq/nmol) suitable for the radiolabeling of DOTA-conjugated vectors. The produced 132/135La3+ has a radiochemical and radionuclidic purity amenable for 132La/135La-based cancer theranostic applications. Longitudinal PET/CT images acquired using the positron-emitting 132La and ex vivo biodistribution data separately corroborated the accumulation of unchelated 132/135La3+ ions in bone and the liver.

18.
Appl Radiat Isot ; 146: 99-103, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30763821

RESUMO

We report a novel, precipitation-based method for the isolation of Mn from Cr targets for cyclotron production of 52gMn. The separation produces no-carrier-added 52gMn with a decay corrected radiochemical yield of 85 ±â€¯3% and apparent molar activity for DOTA of 1.3 GBq/µmol. This method reduces stable metallic impurities in the purified 52gMn compared to previously reported chromatographic methods.

20.
Adv Mater ; 30(6)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29266476

RESUMO

A multifunctional core-satellite nanoconstruct is designed by assembling copper sulfide (CuS) nanoparticles on the surface of [89 Zr]-labeled hollow mesoporous silica nanoshells filled with porphyrin molecules, for effective cancer imaging and therapy. The hybrid nanotheranostic demonstrates three significant features: (1) simple and robust construction from biocompatible building blocks, demonstrating prolonged blood retention, enhanced tumor accumulation, and minimal long-term systemic toxicity, (2) rationally selected functional moieties that interact together to enable simultaneous tetramodal (positron emission tomography/fluorescence/Cerenkov luminescence/Cerenkov radiation energy transfer) imaging for rapid and accurate delineation of tumors and multimodal image-guided therapy in vivo, and (3) synergistic interaction between CuS-mediated photothermal therapy and porphyrin-mediated photodynamic therapy which results in complete tumor elimination within a day of treatment with no visible recurrence or side effects. Overall, this proof-of-concept study illustrates an efficient, generalized approach to design high-performance core-satellite nanohybrids that can be easily tailored to combine a wide variety of imaging and therapeutic modalities for improved and personalized cancer theranostics in the future.


Assuntos
Nanoestruturas , Nanomedicina Teranóstica , Nanopartículas , Fotoquimioterapia , Porfirinas , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA