Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895488

RESUMO

Bacteria take up environmental DNA using dynamic appendages called type IV pili (T4P) to elicit horizontal gene transfer in a process called natural transformation. Natural transformation is widespread amongst bacteria yet determining how different factors universally contribute to or limit this process across species has remained challenging. Here we show that Acinetobacter baylyi, the most naturally transformable species, is highly transformable due to its ability to robustly bind nonspecific DNA via a dedicated orphan minor pilin, FimT. We show that, compared to its homologues, A. baylyi FimT contains multiple positively charged residues that additively promote DNA binding efficiency. Expression of A. baylyi FimT in a closely related Acinetobacter pathogen is sufficient to substantially improve its capacity for natural transformation, demonstrating that T4P-DNA binding is a rate-limiting step in this process. These results demonstrate the importance of T4P-DNA binding efficiency in driving natural transformation, establishing a key factor limiting horizontal gene transfer.

2.
J Wildl Dis ; 59(4): 759-766, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486869

RESUMO

Twenty-four American white ibis (Eudocimus albus) nestlings were collected in Florida (USA) on 17 April 2017 to establish a captive flock. On 7 May 2017, three birds died suddenly, following severe lethargy, hemorrhaging from the mouth and nares, anorexia, and production of bright-green colored feces. An additional ibis with delayed growth and pathological fractures was euthanized 18 May 2017. Severe ventriculitis associated with Macrorhabdus ornithogaster was noted in all four birds, bacterial sepsis was confirmed in one bird by culture and histologic examination, and bacterial endotoxemia was suspected in two birds based on gross and histologic examination, but no bacteria were isolated from these birds. Birds also had vitamin E liver levels consistent with coagulopathy previously described in pelicans. We sampled feces from 91 adult, free-living, healthy ibis in Florida in July 2017 and found 71% were shedding organisms with morphologic characteristics consistent with Macrorhabdus sp. Molecular characterization of the ibis-origin M. ornithogaster showed it was phylogenetically related to numerous M. ornithogaster sequences. It is unknown if M. ornithogaster infection resulted in clinical disease as a result of dietary or stress-related dysbiosis, or other factors. Macrorhabdus-associated disease has not previously been confirmed in wading birds. We discuss potential associations of gastric M. ornithogaster infection with morbidity and mortality in these cases and highlight the need for additional studies on this pathogen in free-living birds.


Assuntos
Doenças das Aves , Saccharomycetales , Animais , Estados Unidos , Aves , Fezes/microbiologia , Bactérias , Doenças das Aves/microbiologia
3.
Ecohealth ; 18(3): 345-358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34453242

RESUMO

Food provisioning can change wildlife pathogen dynamics by altering host susceptibility via nutrition and/or through shifts in foraging behavior and space use. We used the American white ibis (Eudocimus albus), a wading bird increasingly observed in urban parks, as a model to study synergistic relationships between food provisioning and infection risk across an urban gradient in South Florida. We tested whether Salmonella prevalence was associated with changes in ibis diet (stable isotope analysis), space use (site fidelity via GPS tracking), and local density (flock size). We compared the relative importance of these mechanisms by ranking candidate models using logistic regression. We detected Salmonella in 27% of white ibises (n = 233) sampled at 15 sites. Ibises with diets higher in anthropogenic food exhibited higher site fidelity. Salmonella prevalence was higher at sites where ibises exhibited greater site fidelity and Salmonella was more prevalent in soil and water. Overlap in Salmonella serotypes between ibises and soil or water also was more likely at sites where ibises exhibited higher site fidelity. Our results suggest that repeated use of foraging areas may increase Salmonella exposure for birds if foraging areas are contaminated from animal feces, human waste, or other bacterial sources. Limiting wildlife feeding in parks-perhaps best achieved through understanding the motivations for feeding, education, and enforcement-may reduce health risks for wildlife and the public.


Assuntos
Aves , Ecossistema , Animais , Animais Selvagens , Aves/microbiologia , Dieta , Salmonella
4.
Ecol Evol ; 10(15): 8416-8428, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788990

RESUMO

When wildlife forage and/or live in urban habitats, they often experience a shift in resource availability and dietary quality. Some species even use human handouts, such as bread, as well as human refuse, as a large part of their new diets; yet the influences of this nutritional shift on health and survival remain unclear. American white ibises are increasingly being seen in urban areas in Florida; they collect handouts, such as bread and other food items, from humans in parks, and are also found foraging on anthropogenic sources in trash heaps. We hypothesized that the consumption of these new anthropogenic food sources may trigger increases in indicators of physiological challenge and dampen immune responses. We tested this experimentally by raising 20 white ibis nestlings in captivity, and exposing 10 to a simulated anthropogenic diet (including the addition of white bread and a reduction in seafood content) while maintaining 10 on a diet similar to what ibises consume in more natural environments. We then tested two indicators of physiological challenge (corticosterone and heat shock protein 70), assessed innate immunity in these birds via bactericidal assays and an in vitro carbon clearance assay, and adaptive immunity using a phytohemagglutinin skin test. The anthropogenic diet depressed the development of the ability to kill Salmonella paratyphi in culture. Our results suggest that consuming an anthropogenic diet may be detrimental in terms of the ability to battle a pathogenic bacterial species, but there was little effect on indicators of physiological challenge and other immunological measures.

5.
PLoS One ; 15(3): e0220926, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32134945

RESUMO

Microbial communities in the gastrointestinal tract influence many aspects of host health, including metabolism and susceptibility to pathogen colonization. These relationships and the environmental and individual factors that drive them are relatively unexplored for free-living wildlife. We quantified the relationships between urban habitat use, diet, and age with microbiome composition and diversity for 82 American white ibises (Eudocimus albus) captured along an urban gradient in south Florida and tested whether gut microbial diversity was associated with Salmonella enterica prevalence. Shifts in community composition were significantly associated with urban land cover and, to a lesser extent, diets higher in provisioned food. The diversity of genera was negatively associated with community composition associated with urban land cover, positively associated with age class, and negatively associated with Salmonella shedding. Our results suggest that shifts in both habitat use and diet for urban birds significantly alter gut microbial composition and diversity in ways that may influence health and pathogen susceptibility as species adapt to urban habitats.


Assuntos
Aves/fisiologia , Microbioma Gastrointestinal , Animais , Dieta/veterinária , Ecossistema , Intestinos/microbiologia , Análise de Componente Principal , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação
6.
PLoS One ; 15(3): e0230158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32191732

RESUMO

The American White Ibis (Eudocimus albus) is a nomadic wading bird that is increasing the amount of time spent foraging in urban areas, relying on artificial wetlands and other anthropogenic resources year-round. In this study, we explore whether and how American White Ibis association with urban environments is predictive of variation in the timing and length of behavioral seasons. Other urbanized species exhibit altered annual cycles such as loss of migratory behavior and year-round breeding related to consistent resource abundance, often related to intentional and unintentional provisioning. To determine if these same patterns of behavior were also present in White Ibis, we used behavioral change point analysis to segment the tracks of 41 ibis equipped with GPS backpacks to identify the initiation and duration of four behavioral seasons (non-breeding, pre-breeding, breeding, post-breeding) the degree of urban association. We found that intraspecific variation in urban habitat use had strong carryover effects on the timing and duration of behavioral seasons. This study revealed ibis with higher use of urban habitats in non-breeding seasons had longer non-breeding seasons and shorter breeding seasons that began earlier in the year compared to ibis that primarily use wetland habitats. The timing and duration of seasons also varied with ibis age, such that ibis spent more time engaged in breeding-related seasons as they aged. Juvenile and subadult ibis, though considered to be reproductively immature, also exhibit behavioral shifts in relation to breeding seasons. The behavioral patterns found in this study provide evidence that ibis are adapting their annual cycles and seasonal behaviors to exploit urban resources. Future research is needed to identify the effect of interactions between ibis urban association and age on behavioral season expression.


Assuntos
Aves/fisiologia , Ecossistema , Comportamento Alimentar , Urbanização , Migração Animal , Animais , Animais Selvagens/fisiologia , Comportamento , Cruzamento , Reprodução , Estações do Ano , Áreas Alagadas
7.
J Wildl Dis ; 56(3): 530-537, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31895646

RESUMO

The American White Ibis (Eudocimus albus) is a nomadic wading bird common to wetland habitats in the southeastern US. In south Florida, US, habitat depletion has driven many ibis to become highly urbanized. Although they forage in neighborhood parks, artificial wetlands, backyards, and golf courses, the majority continue to nest in natural wetlands, often in dense, mixed species colonies. Adults and juveniles commonly disperse thousands of kilometers to other breeding colonies along the Gulf and southeast Atlantic coasts, presenting the potential for close contact with humans, domestic animals, and other wild bird species. Historically, wading birds were not considered to be significant hosts for influenza A virus (IAV), yet as ibis regularly move among various human, domestic animal, and wildlife interfaces, their potential to be exposed to or infected with IAV deserves attention. We experimentally challenged wild-caught, captive-reared White Ibis (n=20) with IAV, tested wild White Ibis for IAV, and serologically tested wild White Ibis for antibodies to IAV. White Ibis were highly susceptible to experimental challenge with H6N1 and H11N9 IAVs, with cloacal shedding lasting an average of 6 d. All 13 infected birds seroconverted by 14 d postinfection as determined by microneutralization. In contrast, no birds challenged with H3N8 were infected. We tested 118 swabs and 578 serum samples from White Ibis captured in southeastern Florida for IAV infection and antibodies to IAV, respectively. Although no IAVs were isolated, 70.4% serum samples were antibody positive by blocking enzyme-linked immunosorbent assay (bELISA). Neutralizing antibodies to H1-H12 were detected in 96.0% of a subset of bELISA positive birds (n=196) and 81.0% tested antibody positive to two or more hemagglutinin subtypes, indicating that exposure to multiple IAVs is common. These results provide evidence that White Ibis are susceptible and naturally infected with IAV and may represent a component of the IAV natural reservoir system.


Assuntos
Aves/virologia , Reservatórios de Doenças/veterinária , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Animais , Anticorpos Antivirais/sangue , Reservatórios de Doenças/virologia , Hemaglutininas/classificação , Vírus da Influenza A/classificação , Vírus da Influenza A/imunologia , Influenza Aviária/sangue
8.
Artigo em Inglês | MEDLINE | ID: mdl-29531152

RESUMO

Many wildlife species shift their diets to use novel resources in urban areas. The consequences of these shifts are not well known, and consumption of reliable-but low quality-anthropogenic food may present important trade-offs for wildlife health. This may be especially true for carnivorous species such as the American white ibis (Eudocimus albus), a nomadic wading bird which has been increasingly observed in urban parks in South Florida, USA. We tested the effects of anthropogenic provisioning on consumer nutrition (i.e. dietary protein), body condition and ectoparasite burdens along an urban gradient using stable isotope analysis, scaled mass index values and GPS transmitter data. Ibises that assimilated more provisioned food were captured at more urban sites, used more urban habitat, had lower mass-length residuals, lower ectoparasite scores, assimilated less δ15N and had smaller dietary isotopic ellipses. Our results suggest that ibises in urban areas are heavily provisioned with anthropogenic food, which appears to offer a trade-off by providing low-quality, but easily accessible, calories that may not support high mass but may increase time available for anti-parasite behaviours such as preening. Understanding such trade-offs is important for investigating the effects of provisioning on infection risk and the conservation of wildlife in human-modified habitats.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.


Assuntos
Ração Animal/provisão & distribuição , Migração Animal/fisiologia , Aves/fisiologia , Ectoparasitoses/veterinária , Comportamento Alimentar/fisiologia , Animais , Animais Selvagens , Aves/parasitologia , Dieta , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/análise , Ecossistema , Ectoparasitoses/epidemiologia , Ectoparasitoses/parasitologia , Florida/epidemiologia , Asseio Animal/fisiologia , Ácaros/fisiologia , Isótopos de Nitrogênio/metabolismo , Ftirápteros/fisiologia , Dinâmica Populacional , Estações do Ano , Urbanização
9.
J R Soc Interface ; 15(149): 20180654, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30958239

RESUMO

Conversion of natural habitats into urban landscapes can expose wildlife to novel pathogens and alter pathogen transmission pathways. Because transmission is difficult to quantify for many wildlife pathogens, mathematical models paired with field observations can help select among competing transmission pathways that might operate in urban landscapes. Here we develop a mathematical model for the enteric bacteria Salmonella enterica in urban-foraging white ibis ( Eudocimus albus) in south Florida as a case study to determine (i) the relative importance of contact-based versus environmental transmission among ibis and (ii) whether transmission can be supported by ibis alone or requires external sources of infection. We use biannual field prevalence data to restrict model outputs generated from a Latin hypercube sample of parameter space and select among competing transmission scenarios. We find the most support for transmission from environmental uptake rather than between-host contact and that ibis-ibis transmission alone could maintain low infection prevalence. Our analysis provides the first parameter estimates for Salmonella shedding and uptake in a wild bird and provides a key starting point for predicting how ibis response to urbanization alters their exposure to a multi-host zoonotic enteric pathogen. More broadly, our study provides an analytical roadmap to assess transmission pathways of multi-host wildlife pathogens in the face of scarce infection data.


Assuntos
Doenças das Aves , Aves/microbiologia , Ecossistema , Modelos Biológicos , Salmonelose Animal , Salmonella enterica , Urbanização , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/microbiologia , Doenças das Aves/transmissão , Salmonelose Animal/epidemiologia , Salmonelose Animal/microbiologia , Salmonelose Animal/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA