Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 4): 829-840, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900457

RESUMO

Imaging energy filters in photoelectron microscopes and momentum microscopes use spherical fields with deflection angles of 90°, 180° and even 2 × 180°. These instruments are optimized for high energy resolution, and exhibit image aberrations when operated in high transmission mode at medium energy resolution. Here, a new approach is presented for bandpass-filtered imaging in real or reciprocal space using an electrostatic dodecapole with an asymmetric electrode array. In addition to energy-dispersive beam deflection, this multipole allows aberration correction up to the third order. Here, its use is described as a bandpass prefilter in a time-of-flight momentum microscope at the hard X-ray beamline P22 of PETRA III. The entire instrument is housed in a straight vacuum tube because the deflection angle is only 4° and the beam displacement in the filter is only ∼8 mm. The multipole is framed by transfer lenses in the entrance and exit branches. Two sets of 16 different-sized entrance and exit apertures on piezomotor-driven mounts allow selection of the desired bandpass. For pass energies between 100 and 1400 eV and slit widths between 0.5 and 4 mm, the transmitted kinetic energy intervals are between 10 eV and a few hundred electronvolts (full width at half-maximum). The filter eliminates all higher or lower energy signals outside the selected bandpass, significantly improving the signal-to-background ratio in the time-of-flight analyzer.

2.
J Synchrotron Radiat ; 28(Pt 6): 1891-1908, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738944

RESUMO

The small time gaps of synchrotron radiation in conventional multi-bunch mode (100-500 MHz) or laser-based sources with high pulse rate (∼80 MHz) are prohibitive for time-of-flight (ToF) based photoelectron spectroscopy. Detectors with time resolution in the 100 ps range yield only 20-100 resolved time slices within the small time gap. Here we present two techniques of implementing efficient ToF recording at sources with high repetition rate. A fast electron-optical beam blanking unit with GHz bandwidth, integrated in a photoelectron momentum microscope, allows electron-optical `pulse-picking' with any desired repetition period. Aberration-free momentum distributions have been recorded at reduced pulse periods of 5 MHz (at MAX II) and 1.25 MHz (at BESSY II). The approach is compared with two alternative solutions: a bandpass pre-filter (here a hemispherical analyzer) or a parasitic four-bunch island-orbit pulse train, coexisting with the multi-bunch pattern on the main orbit. Chopping in the time domain or bandpass pre-selection in the energy domain can both enable efficient ToF spectroscopy and photoelectron momentum microscopy at 100-500 MHz synchrotrons, highly repetitive lasers or cavity-enhanced high-harmonic sources. The high photon flux of a UV-laser (80 MHz, <1 meV bandwidth) facilitates momentum microscopy with an energy resolution of 4.2 meV and an analyzed region-of-interest (ROI) down to <800 nm. In this novel approach to `sub-µm-ARPES' the ROI is defined by a small field aperture in an intermediate Gaussian image, regardless of the size of the photon spot.

4.
J Synchrotron Radiat ; 26(Pt 6): 1996-2012, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721745

RESUMO

An alternative approach to hard-X-ray photoelectron spectroscopy (HAXPES) has been established. The instrumental key feature is an increase of the dimensionality of the recording scheme from 2D to 3D. A high-energy momentum microscope detects electrons with initial kinetic energies up to 8 keV with a k-resolution of 0.025 Å-1, equivalent to an angular resolution of 0.034°. A special objective lens with k-space acceptance up to 25 Å-1 allows for simultaneous full-field imaging of many Brillouin zones. Combined with time-of-flight (ToF) parallel energy recording this yields maximum parallelization. Thanks to the high brilliance (1013 hν s-1 in a spot of <20 µm diameter) of beamline P22 at PETRA III (Hamburg, Germany), the microscope set a benchmark in HAXPES recording speed, i.e. several million counts per second for core-level signals and one million for d-bands of transition metals. The concept of tomographic k-space mapping established using soft X-rays works equally well in the hard X-ray range. Sharp valence band k-patterns of Re, collected at an excitation energy of 6 keV, correspond to direct transitions to the 28th repeated Brillouin zone. Measured total energy resolutions (photon bandwidth plus ToF-resolution) are 62 meV and 180 meV FWHM at 5.977 keV for monochromator crystals Si(333) and Si(311) and 450 meV at 4.0 keV for Si(111). Hard X-ray photoelectron diffraction (hXPD) patterns with rich fine structure are recorded within minutes. The short photoelectron wavelength (10% of the interatomic distance) `amplifies' phase differences, making full-field hXPD a sensitive structural tool.

5.
Nat Mater ; 16(6): 615-621, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28272500

RESUMO

We performed a full mapping of the bulk electronic structure including the Fermi surface and Fermi-velocity distribution vF(kF) of tungsten. The 4D spectral function ρ(EB; k) in the entire bulk Brillouin zone and 6 eV binding-energy (EB) interval was acquired in ∼3 h thanks to a new multidimensional photoemission data-recording technique (combining full-field k-microscopy with time-of-flight parallel energy recording) and the high brilliance of the soft X-rays used. A direct comparison of bulk and surface spectral functions (taken at low photon energies) reveals a time-reversal-invariant surface state in a local bandgap in the (110)-projected bulk band structure. The surface state connects hole and electron pockets that would otherwise be separated by an indirect local bandgap. We confirmed its Dirac-like spin texture by spin-filtered momentum imaging. The measured 4D data array enables extraction of the 3D dispersion of all bands, all energy isosurfaces, electron velocities, hole or electron conductivity, effective mass and inner potential by simple algorithms without approximations. The high-Z bcc metals with large spin-orbit-induced bandgaps are discussed as candidates for topologically non-trivial surface states.

6.
Phys Rev Lett ; 120(23): 237201, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932703

RESUMO

We observe the excitation of collective modes in the terahertz (THz) range driven by the recently discovered Néel spin-orbit torques (NSOTs) in the metallic antiferromagnet Mn_{2}Au. Temperature-dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 to 450 K softens and loses intensity. A comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR). The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by 3 orders of magnitude. Based on this and the agreement with our theory modeling, we infer that the driving mechanism for the observed mode is the current-induced NSOT. Here the electric field component of the THz pulse drives an ac current in the metal, which subsequently drives the AFMR. This electric manipulation of the Néel order parameter at high frequencies makes Mn_{2}Au a prime candidate for antiferromagnetic ultrafast memory applications.

7.
J Chem Phys ; 145(3): 034702, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27448899

RESUMO

We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F4TCNQ (where DTBDT is dithieno[2,3-d;2',3'-d'] benzo[1,2-b;4,5-b']dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F4 TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.

8.
Phys Rev Lett ; 110(13): 137202, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581364

RESUMO

The exchange coupling of a single spin localized at the central ion of Cu-tetraazaporphyrin on a magnetite(100) surface has been studied using x-ray magnetic circular dichroism (XMCD). Sum rule analysis of the XMCD spectra results in Cu spin and orbital magnetic moments as a function of the applied external field at low temperatures (20 K). The exchange coupling is positive for magnetization direction perpendicular to the surface (ferromagnetic) while it is negative for in-plane magnetization direction (antiferromagnetic). We attribute the anisotropy of the Heisenberg exchange coupling to an orbitally dependent exchange Hamiltonian.

9.
Ultramicroscopy ; 250: 113750, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178606

RESUMO

X-ray photoelectron diffraction (XPD) is a powerful technique that yields detailed structural information of solids and thin films that complements electronic structure measurements. Among the strongholds of XPD we can identify dopant sites, track structural phase transitions, and perform holographic reconstruction. High-resolution imaging of kll-distributions (momentum microscopy) presents a new approach to core-level photoemission. It yields full-field kx-ky XPD patterns with unprecedented acquisition speed and richness in details. Here, we show that beyond the pure diffraction information, XPD patterns exhibit pronounced circular dichroism in the angular distribution (CDAD) with asymmetries up to 80%, alongside with rapid variations on a small kll-scale (0.1 Å-1). Measurements with circularly-polarized hard X-rays (hν = 6 keV) for a number of core levels, including Si, Ge, Mo and W, prove that core-level CDAD is a general phenomenon that is independent of atomic number. The fine structure in CDAD is more pronounced compared to the corresponding intensity patterns. Additionally, they obey the same symmetry rules as found for atomic and molecular species, and valence bands. The CD is antisymmetric with respect to the mirror planes of the crystal, whose signatures are sharp zero lines. Calculations using both the Bloch-wave approach and one-step photoemission reveal the origin of the fine structure that represents the signature of Kikuchi diffraction. To disentangle the roles of photoexcitation and diffraction, XPD has been implemented into the Munich SPRKKR package to unify the one-step model of photoemission and multiple scattering theory.

10.
J Phys Condens Matter ; 34(42)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35940170

RESUMO

Using momentum microscopy with sub-µm spatial resolution, allowing momentum resolved photoemission on individual antiferromagnetic domains, we observe an asymmetry in the electronic band structure,E(k)≠E(-k), in Mn2Au. This broken band structure parity originates from the combined time and parity symmetry,PT, of the antiferromagnetic order of the Mn moments, in connection with spin-orbit coupling. The spin-orbit interaction couples the broken parity to the Néel order parameter direction. We demonstrate a novel tool to image the Néel vector direction,N, by combining spatially resolved momentum microscopy withab-initiocalculations that correlate the broken parity with the vectorN.

11.
Phys Rev Lett ; 107(20): 207601, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22181775

RESUMO

Since the original work by Mott, the low efficiency of electron spin polarimeters, remaining orders of magnitude behind optical polarimeters, has prohibited many fundamental experiments. Here we report a solution to this problem using a novel concept of multichannel spin-polarization analysis that provides a stunning increase in efficiency by 4 orders of magnitude. This improvement was demonstrated in a setup using a hemispherical electron energy analyzer. An imaging setup proved the principal capability of resolving more than 10(5) data points in parallel.

12.
J Phys Condens Matter ; 33(20)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33561846

RESUMO

The heavy-fermion behavior in intermetallic compounds manifests itself in a quenching of local magnetic moments by developing Kondo spin-singlet many-body states combined with a drastic increase of the effective mass of conduction electrons, which occurs below the lattice Kondo temperatureTK. This behavior is caused by interactions between the strongly localized 4felectrons and itinerant electrons. A controversially discussed question in this context is how the localized electronic states contribute to the Fermi surface upon changing the temperature. One expects that hybridization between the local moments and the itinerant electrons leads to a transition from a small Fermi surface in a non-coherent regime at high temperatures to a large Fermi surface once the coherent Kondo lattice regime is realized belowTK. We demonstrate, using hard x-ray angle-resolved photoemission spectroscopy that the electronic structure of the prototypical heavy fermion compound YbRh2Si2changes with temperature between 100 and 200 K, i.e. far above the Kondo temperature,TK= 25 K, of this system. Our results suggest a transition from a small to a large Fermi surface with decreasing temperature. This result is inconsistent with the prediction of the dynamical mean-field periodic Anderson model and supports the idea of an independent energy scale governing the change of band dispersion.

13.
Nat Commun ; 12(1): 6539, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764314

RESUMO

In antiferromagnetic spintronics, the read-out of the staggered magnetization or Néel vector is the key obstacle to harnessing the ultra-fast dynamics and stability of antiferromagnets for novel devices. Here, we demonstrate strong exchange coupling of Mn2Au, a unique metallic antiferromagnet that exhibits Néel spin-orbit torques, with thin ferromagnetic Permalloy layers. This allows us to benefit from the well-established read-out methods of ferromagnets, while the essential advantages of antiferromagnetic spintronics are only slightly diminished. We show one-to-one imprinting of the antiferromagnetic on the ferromagnetic domain pattern. Conversely, alignment of the Permalloy magnetization reorients the Mn2Au Néel vector, an effect, which can be restricted to large magnetic fields by tuning the ferromagnetic layer thickness. To understand the origin of the strong coupling, we carry out high resolution electron microscopy imaging and we find that our growth yields an interface with a well-defined morphology that leads to the strong exchange coupling.

14.
Rev Sci Instrum ; 92(5): 053703, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243258

RESUMO

The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e-e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from -20 to -1100 V/mm for Ekin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 µm above the sample surface for Ekin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at Ekin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm2 (retarding field -21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm2, it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at Ekin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments.

15.
Rev Sci Instrum ; 91(12): 123110, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379996

RESUMO

Photoelectron momentum microscopy is an emerging powerful method for angle-resolved photoelectron spectroscopy (ARPES), especially in combination with imaging spin filters. These instruments record kx-ky images, typically exceeding a full Brillouin zone. As energy filters, double-hemispherical or time-of-flight (ToF) devices are in use. Here, we present a new approach for momentum mapping of the full half-space, based on a large single hemispherical analyzer (path radius of 225 mm). Excitation by an unfocused He lamp yielded an energy resolution of 7.7 meV. The performance is demonstrated by k-imaging of quantum-well states in Au and Xe multilayers. The α2-aberration term (α, entrance angle in the dispersive plane) and the transit-time spread of the electrons in the spherical field are studied in a large pass-energy (6 eV-660 eV) and angular range (α up to ±7°). It is discussed how the method circumvents the preconditions of previous theoretical work on the resolution limitation due to the α2-term and the transit-time spread, being detrimental for time-resolved experiments. Thanks to k-resolved detection, both effects can be corrected numerically. We introduce a dispersive-plus-ToF hybrid mode of operation, with an imaging ToF analyzer behind the exit slit of the hemisphere. This instrument captures 3D data arrays I (EB, kx, ky), yielding a gain up to N2 in recording efficiency (N being the number of resolved time slices). A key application will be ARPES at sources with high pulse rates such as synchrotrons with 500 MHz time structure.

16.
ACS Nano ; 14(12): 17554-17564, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33236903

RESUMO

The coupling of real and momentum space is utilized to tailor electronic properties of the collinear metallic antiferromagnet Mn2Au by aligning the real space Néel vector indicating the direction of the staggered magnetization. Pulsed magnetic fields of 60 T were used to orient the sublattice magnetizations of capped epitaxial Mn2Au(001) thin films perpendicular to the applied field direction by a spin-flop transition. The electronic structure and its corresponding changes were investigated by angular-resolved photoemission spectroscopy with photon energies in the vacuum-ultraviolet, soft, and hard X-ray range. The results reveal an energetic rearrangement of conduction electrons propagating perpendicular to the Néel vector. They confirm previous predictions on the origin of the Néel spin-orbit torque and anisotropic magnetoresistance in Mn2Au and reflect the combined antiferromagnetic and spin-orbit interaction in this compound leading to inversion symmetry breaking.

17.
Rev Sci Instrum ; 91(1): 013109, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012554

RESUMO

Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that combines free-electron laser capabilities together with a multidimensional recording scheme for photoemission studies. We use a full-field imaging momentum microscope with time-of-flight energy recording as the detector for mapping of 3D band structures in (kx, ky, E) parameter space with unprecedented efficiency. Our instrument can image full surface Brillouin zones with up to 7 Å-1 diameter in a binding-energy range of several eV, resolving about 2.5 × 105 data voxels simultaneously. Using the ultrafast excited state dynamics in the van der Waals semiconductor WSe2 measured at photon energies of 36.5 eV and 109.5 eV, we demonstrate an experimental energy resolution of 130 meV, a momentum resolution of 0.06 Å-1, and a system response function of 150 fs.

18.
Phys Rev Lett ; 103(21): 216101, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-20366053

RESUMO

Strained coherent film growth is commonly either limited to ultrathin films or low strains. Here, we present an approach to achieve high strains in thicker films, by using materials with inherent structural instabilities. As an example, 50 nm thick epitaxial films of the Fe70Pd30 magnetic shape memory alloy are examined. Strained coherent growth on various substrates allows us to adjust the tetragonal distortion from c/a{bct}=1.09 to 1.39, covering most of the Bain transformation path from fcc to bcc crystal structure. Magnetometry and x-ray circular dichroism measurements show that the Curie temperature, orbital magnetic moment, and magnetocrystalline anisotropy change over broad ranges.

19.
J Phys Condens Matter ; 20(23): 235218, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-21694309

RESUMO

Threshold photoemission excited by polarization-modulated ultraviolet femtosecond laser light is exploited for phase-sensitive detection of magnetic circular dichroism (MCD) for a magnetite thin film. Magnetite (Fe(3)O(4)) shows a magnetic circular dichroism of ∼(4.5 ± 0.3) × 10(-3) for perpendicularly incident circularly polarized light and a magnetization vector switched parallel and antiparallel to the helicity vector by an external magnetic field. The asymmetry in threshold photoemission is discussed in comparison to the magneto-optical Kerr effect. The optical MCD contrast in threshold photoemission will provide a basis for future laboratory photoemission studies on magnetic surfaces.

20.
Nat Commun ; 9(1): 348, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367633

RESUMO

Using antiferromagnets as active elements in spintronics requires the ability to manipulate and read-out the Néel vector orientation. Here we demonstrate for Mn2Au, a good conductor with a high ordering temperature suitable for applications, reproducible switching using current pulse generated bulk spin-orbit torques and read-out by magnetoresistance measurements. Reversible and consistent changes of the longitudinal resistance and planar Hall voltage of star-patterned epitaxial Mn2Au(001) thin films were generated by pulse current densities of ≃107 A/cm2. The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than ≃6% is reproduced by ab initio transport calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA