Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610575

RESUMO

Cloud-based Radio Access Network (Cloud-RAN) leverages virtualization to enable the coexistence of multiple virtual Base Band Units (vBBUs) with collocated workloads on a single edge computer, aiming for economic and operational efficiency. However, this coexistence can cause performance degradation in vBBUs due to resource contention. In this paper, we conduct an empirical analysis of vBBU performance on a Linux RT-Kernel, highlighting the impact of resource sharing with user-space tasks and Kernel threads. Furthermore, we evaluate CPU management strategies such as CPU affinity and CPU isolation as potential solutions to these performance challenges. Our results highlight that the implementation of CPU affinity can significantly reduce throughput variability by up to 40%, decrease vBBU's NACK ratios, and reduce vBBU scheduling latency within the Linux RT-Kernel. Collectively, these findings underscore the potential of CPU management strategies to enhance vBBU performance in Cloud-RAN environments, enabling more efficient and stable network operations. The paper concludes with a discussion on the efficient realization of Cloud-RAN, elucidating the benefits of implementing proposed CPU affinity allocations. The demonstrated enhancements, including reduced scheduling latency and improved end-to-end throughput, affirm the practicality and efficacy of the proposed strategies for optimizing Cloud-RAN deployments.

2.
Nat Commun ; 14(1): 186, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650144

RESUMO

Dynamic processes on networks, be it information transfer in the Internet, contagious spreading in a social network, or neural signaling, take place along shortest or nearly shortest paths. Computing shortest paths is a straightforward task when the network of interest is fully known, and there are a plethora of computational algorithms for this purpose. Unfortunately, our maps of most large networks are substantially incomplete due to either the highly dynamic nature of networks, or high cost of network measurements, or both, rendering traditional path finding methods inefficient. We find that shortest paths in large real networks, such as the network of protein-protein interactions and the Internet at the autonomous system level, are not random but are organized according to latent-geometric rules. If nodes of these networks are mapped to points in latent hyperbolic spaces, shortest paths in them align along geodesic curves connecting endpoint nodes. We find that this alignment is sufficiently strong to allow for the identification of shortest path nodes even in the case of substantially incomplete networks, where numbers of missing links exceed those of observable links. We demonstrate the utility of latent-geometric path finding in problems of cellular pathway reconstruction and communication security.


Assuntos
Algoritmos , Transdução de Sinais , Comunicação , Comunicação Celular
3.
Nat Commun ; 12(1): 5918, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635661

RESUMO

Fuelled by epidemiological studies of SARS-CoV-2, contact tracing by mobile phones has been put to use in many countries. Over a year into the pandemic, we lack conclusive evidence on its effectiveness. To address this gap, we used a unique real world contact data set, collected during the rollout of the first Norwegian contact tracing app in the Spring of 2020. Our dataset involves millions of contacts between 12.5% of the adult population, which enabled us to measure the real-world app performance. The technological tracing efficacy was measured at 80%, and we estimated that at least 11.0% of the discovered close contacts could not have been identified by manual contact tracing. Our results also indicated that digital contact tracing can flag individuals with excessive contacts, which can help contain superspreading related outbreaks. The overall effectiveness of digital tracing depends strongly on app uptake, but significant impact can be achieved for moderate uptake numbers. Used as a supplement to manual tracing and other measures, digital tracing can be instrumental in controlling the pandemic. Our findings can thus help informing public health policies in the coming months.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , Busca de Comunicante , Pandemias/prevenção & controle , Humanos , Aplicativos Móveis , Noruega/epidemiologia , Probabilidade , SARS-CoV-2/fisiologia
4.
Sci Rep ; 8(1): 7443, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748570

RESUMO

This paper investigates the possibility of saving a network that is predicted to have a cascading failure that will eventually lead to a total collapse. We model cascading failures using the recently proposed KQ model. Then predict an impending total collapse by monitoring critical slowing down indicators and subsequently attempt to prevent the total collapse of the network by adding new nodes. To this end, we systematically evaluate five node addition rules, the effect of intervention delay and network degree heterogeneity. Surprisingly, unlike for random homogeneous networks, we find that a delayed intervention is preferred for saving scale free networks. We also find that for homogeneous networks, the best strategy is to wire newly added nodes to existing nodes in a uniformly random manner. For heterogeneous networks, however, a random selection of nodes based on their degree mostly outperforms a uniform random selection. These results provide new insights into restoring networks by adding nodes after observing early warnings of an impending complete breakdown.

5.
PLoS One ; 12(12): e0189624, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29252988

RESUMO

Although cascading failures caused by overload on interdependent/interconnected networks have been studied in the recent years, the effect of overlapping links (inter-similarity) on robustness to such cascades in coupled networks is not well understood. This is an important issue since shared links exist in many real-world coupled networks. In this paper, we propose a new model for load-based cascading failures in multiplex networks. We leverage it to compare different network structures, coupling schemes, and overload rules. More importantly, we systematically investigate the impact of inter-similarity on the robustness of the whole system under an initial intentional attack. Surprisingly, we find that inter-similarity can have a negative impact on robustness to overload cascades. To the best of our knowledge, we are the first to report the competition between the positive and the negative impacts of overlapping links on the robustness of coupled networks. These results provide useful suggestions for designing robust coupled traffic systems.


Assuntos
Teoria de Sistemas , Algoritmos , Simulação por Computador , Conhecimento , Modelos Teóricos , Reprodutibilidade dos Testes
6.
PLoS One ; 10(11): e0141481, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26529312

RESUMO

Data transfer is one of the main functions of the Internet. The Internet consists of a large number of interconnected subnetworks or domains, known as Autonomous Systems (ASes). Due to privacy and other reasons the information about what route to use to reach devices within other ASes is not readily available to any given AS. The Border Gateway Protocol (BGP) is responsible for discovering and distributing this reachability information to all ASes. Since the topology of the Internet is highly dynamic, all ASes constantly exchange and update this reachability information in small chunks, known as routing control packets or BGP updates. In the view of the quick growth of the Internet there are significant concerns with the scalability of the BGP updates and the efficiency of the BGP routing in general. Motivated by these issues we conduct a systematic time series analysis of BGP update rates. We find that BGP update time series are extremely volatile, exhibit long-term correlations and memory effects, similar to seismic time series, or temperature and stock market price fluctuations. The presented statistical characterization of BGP update dynamics could serve as a basis for validation of existing and developing better models of Internet interdomain routing.


Assuntos
Armazenamento e Recuperação da Informação , Internet , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA