Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nanotechnology ; 31(21): 215101, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31978926

RESUMO

The molecular stress caused by a drug administered to treat a disorder on healthy cells appears as a side effect. In this study, we aim to understand the potential of hexagonal boron nitrides (hBNs) as a therapeutic agent to relieve the cellular stress exerted by drugs. First, the cytotoxicity of hBNs and their possible degradation product, boric acid (BA), on the embryonic mouse hippocampal cell line mHippo E-14 was assessed in a wide concentration range (4.4-440 µg ml-1) of boron including hBNs and BA for 24 and 72 h exposure. Then, cell cycle, reactive oxygen species generation, cell death mechanism and apoptotic body formation in nuclei with hBN and BA exposure were evaluated at increased concentrations and incubation times. Finally, the cells, exposed to doxorubicin (DOX), an anti-cancer chemotherapy drug, to exert oxidative stress, were treated with hBNs and BA. The results indicate that hBNs decrease the oxidative stress at the concentrations that are nontoxic to cells. The study suggests that hBNs can open new venues for their investigation to reduce or eliminate the adverse effects of toxic drugs used in the treatment of several fatal diseases including neurological disorders and cancer with their slow degradation feature.


Assuntos
Compostos de Boro/farmacologia , Doxorrubicina/efeitos adversos , Hipocampo/embriologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Compostos de Boro/síntese química , Compostos de Boro/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Nanoestruturas , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1861(9): 2391-2397, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28571947

RESUMO

BACKGROUND: Non-viral gene delivery is increasingly investigated as an alternative to viral vectors due to low toxicity and immunogenicity, easy preparation, tissue specificity, and ability to transfer larger sizes of genes. METHODS: In this study, boron nitride nanotubes (BNNTs) are functionalized with oligonucleotides (oligo-BNNTs). The morpholinos complementary to the oligonucleotides attached to the BNNTs (morpholino/oligo-BNNTs) are hybridized to silence the luciferase gene. The morpholino/oligo-BNNTs conjugates are administered to luciferase-expressing cells (MDA-MB-231-luc2) and the luciferase activity is monitored. RESULTS: The luciferase activity is decreased when MDA-MB-231-luc2 cells were treated with morpholino/oligo-BNNTs. CONCLUSIONS: The study suggests that BNNTs can be used as a potential vector to transfect cells. GENERAL SIGNIFICANCE: BNNTs are potential new nanocarriers for gene delivery applications.


Assuntos
Compostos de Boro/química , Inativação Gênica , Técnicas de Transferência de Genes , Nanotubos/química , Sobrevivência Celular , Vetores Genéticos , Luciferases/genética , Luciferases/metabolismo , Oligonucleotídeos/administração & dosagem
3.
ACS Appl Mater Interfaces ; 15(50): 58260-58273, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051559

RESUMO

Microglial cells play a critical role in glioblastoma multiforme (GBM) progression, which is considered a highly malignant brain cancer. The activation of microglia can either promote or inhibit GBM growth depending on the stage of the tumor development and on the microenvironment conditions. The current treatments for GBM have limited efficacy; therefore, there is an urgent need to develop novel and efficient strategies for drug delivery and targeting: in this context, a promising strategy consists of using nanoplatforms. This study investigates the microglial response and the therapeutic efficacy of dual-cell membrane-coated and doxorubicin-loaded hexagonal boron nitride nanoflakes tested on human microglia and GBM cells. Obtained results show promising therapeutic effects on glioma cells and an M2 microglia polarization, which refers to a specific phenotype or activation state that is associated with anti-inflammatory and tissue repair functions, highlighted through proteomic analysis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Microglia , Proteômica , Glioblastoma/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Encefálicas/patologia , Membrana Celular/patologia , Microambiente Tumoral/fisiologia , Linhagem Celular Tumoral
4.
ACS Appl Mater Interfaces ; 15(25): 30008-30028, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37312240

RESUMO

Prostate malignancy represents the second leading cause of cancer-specific death among the male population worldwide. Herein, enhanced intracellular magnetic fluid hyperthermia is applied in vitro to treat prostate cancer (PCa) cells with minimum invasiveness and toxicity and highly specific targeting. We designed and optimized novel shape-anisotropic magnetic core-shell-shell nanoparticles (i.e., trimagnetic nanoparticles - TMNPs) with significant magnetothermal conversion following an exchange coupling effect to an external alternating magnetic field (AMF). The functional properties of the best candidate in terms of heating efficiency (i.e., Fe3O4@Mn0.5Zn0.5Fe2O4@CoFe2O4) were exploited following surface decoration with PCa cell membranes (CM) and/or LN1 cell-penetrating peptide (CPP). We demonstrated that the combination of biomimetic dual CM-CPP targeting and AMF responsiveness significantly induces caspase 9-mediated apoptosis of PCa cells. Furthermore, a downregulation of the cell cycle progression markers and a decrease of the migration rate in surviving cells were observed in response to the TMNP-assisted magnetic hyperthermia, suggesting a reduction in cancer cell aggressiveness.


Assuntos
Peptídeos Penetradores de Células , Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias da Próstata , Masculino , Humanos , Nanopartículas/química , Membrana Celular , Campos Magnéticos , Neoplasias da Próstata/terapia , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química
5.
Front Bioeng Biotechnol ; 10: 953867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992355

RESUMO

Reactive oxygen species (ROS) are a common hallmark of many degenerative diseases, developing in all those cases where a failure of physiological antioxidant mechanisms occurs (in particular, antioxidant enzymes and the glutathione system), or in case of exposure to an extremely high level of oxidants. In this regard, antioxidant natural extracts are promising compounds as preventive or therapeutic agents against ROS-dependent degenerations. In this study, a deep investigation of hazelnut (Corylus avellana) extract has been performed in terms of mass spectroscopy, evaluation of phenolic content, and antioxidant capacity. Then, nanostructured lipid carriers (NLCs) have been exploited for encapsulation of the hazelnut extracts in order to achieve prolonged bioactivity, increased stability, and targeting through a sustainable delivery approach. The hazelnut extract-loaded NLCs (NE_NLCs) have been deeply characterized for their stability, production yield, and encapsulation efficiency. Moreover, NE_NLCs showed optimal cytocompatibility on human dermal fibroblast (HDF) cells, as well as excellent antioxidant activity, upon pro-oxidant stimulus on HDF cells.

6.
ACS Appl Bio Mater ; 5(12): 5901-5910, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36426992

RESUMO

Under healthy physiological conditions, living organisms possess a variety of antioxidant mechanisms to scavenge overproduced reactive oxygen species (ROS). However, under pathological circumstances, endogenous antioxidant systems may not be adequate to eliminate the excessive amount of oxidants, and thus, a continuous exogenous antioxidant income is required. In this regard, sumac (Rhus coriaria) extract is a good candidate for therapeutic applications, because of its high content of antioxidant polyphenolic compounds. In this work, sumac extract-loaded nanosheets (sumac-nanosheet) have been exploited for loading and controlled release of sumac extract, envisioning topical drug delivery applications. Sumac extract has been obtained through the solvent extraction method, and polymeric nanosheets have been thereafter prepared through the spin coating-assisted layer-by-layer deposition of polycaprolactone (PCL), sumac extract, and poly(d,l-lactic acid) (PDLLA). The collected data show a rich content of the sumac extract in terms of polyphenolic compounds, as well as its strong antioxidant properties. Moreover, for the first time in the literature, we demonstrated the possibility of efficiently loading such extract in polymeric nanosheets and the suitability of this nanoplatform as a reactive oxygen species scavenger in human dermal fibroblasts treated with a pro-oxidant insult.


Assuntos
Rhus , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Extratos Vegetais/farmacologia , Estresse Oxidativo , Fibroblastos
7.
Adv Healthc Mater ; 10(10): e2002163, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33763992

RESUMO

Cancer metastasis is the major cause of cancer-related morbidity and mortality. It represents one of the greatest challenges in cancer therapy, both because of the ability of metastatic cells to spread into different organs, and because of the consequent heterogeneity that characterizes primary and metastatic tumors. Nanomaterials can potentially be used as targeting or detection agents owing to unique chemical and physical features that allow tailored and tunable theranostic functions. This review highlights nanomaterial-based approaches in the detection and treatment of cancer metastasis, with a special focus on the evaluation of nanostructure effects on cell migration, invasion, and angiogenesis in the tumor microenvironment.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Nanotecnologia , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral
8.
Biomed Mater ; 15(3): 035015, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32032966

RESUMO

Scaffold-based tissue engineering approaches have been commonly used for skin regeneration or wound healings caused by diseases or trauma. For an ideal complete healing process, scaffold structures need to meet the criteria of biocompatibility, biodegradability, and antimicrobial properties, as well as to provide geometrical necessities for the regeneration of damaged tissue. In this study, design, synthesis and characterization of a three dimensional (3D) printable copolymer based on polycaprolactone-block-poly(1,3-propylene succinate) (PCL-PPSu) including anti-microbial silver particles is presented. 3D printing of PCL-PPSu copolymers provided a lower processing temperature compared to neat PCL, hence, inclusion of temperature-sensitive bioactive reagents into the developed copolymer could be realized. In addition, 3D printed block copolymer showed an enhanced hydrolytic and enzymatic degradation behavior. Cell viability and cytotoxicity of the developed copolymer were evaluated by using human dermal fibroblast (HDF) cells. The addition of silver nitrate within the polymer matrix resulted in a significant decrease in the adhesion of different types of microorganisms on the scaffold without inducing any cytotoxicity on HDF cells in vitro. The results suggested that 3D printed PCL-PPSu scaffolds containing anti-microbial silver particles could be considered as a promising biomaterial for emerging skin regenerative therapies, in the light of its adaptability to 3D printing technology, low-processing temperature, enhanced degradation behavior and antimicrobial properties.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Impressão Tridimensional , Nitrato de Prata/química , Pele/patologia , Engenharia Tecidual/métodos , Antibacterianos/química , Anti-Infecciosos/química , Fibroblastos/metabolismo , Humanos , Hidrólise , Espectroscopia de Ressonância Magnética , Polímeros/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais
9.
ACS Appl Bio Mater ; 2(12): 5582-5596, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021553

RESUMO

There is an increased interest in the use of hexagonal boron nitrides (hBNs) in medicine due to their unique properties that include low toxicity, absorption of UV light and neutrons, high chemical stability, and mechanical strength. In this study, hBNs were investigated for wound healing therapy as a potential therapeutic agent. Boron compounds (especially boric acid) are increasingly used in wound healing therapy; however, their short half-life is a bottleneck and limits their use. Because hBNs slowly degrade and one of the degradation products is boric acid (BA), hBNs and BA were comparatively evaluated in vitro to assess their influence on wound healing. First, antimicrobial activity and cytotoxicity of synthesized hBNs were evaluated for dose determination. Then, the results of scratch assay indicated that hBNs accelerated the wound closure at low concentrations, showing also enhanced angiogenic activity compared to BA. The cell cycle analysis showed that hBNs did not arrest the cells in the G2/M phase but induced the cells to go into S phase, whereas BA had almost no effect on the cell proliferation. It was also found that the hBNs decreased the reactive oxygen species level more than BA. Apoptosis/necrosis assay showed that the hBNs rescued the cells from apoptosis, whereas BA had almost no effect on the cell death mechanism. Beside, hBNs did not cause damage to the mitochondria at low concentration and did not perturb the F-actin conformation at all tested concentrations. These findings suggest that hBNs might be a potential therapeutic agent in wound healing therapy.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31921797

RESUMO

Two-dimensional boron nitride nanostructures (2D-BNNs) have been increasingly investigated for their applications in several scientific and technological areas. This considerable interest is due to their unique physicochemical properties, which include high hydrophobicity, heat and electrical insulation, resistance to oxidation, antioxidation capacity, thermal conductivity, high chemical stability, mechanical strength, and hydrogen storage capacity. They are also used as fillers, antibacterial agents, protective coating agents, lubricants, boron neutron capture therapy agents, nanocarriers for drug delivery, and for the receptor phase in chemosensors. The investigations for their use in medicine and biomedicine are very promising, including cancer therapy and wound healing. In this review, 2D-BNNs synthesis and their surface modification strategies, biocompatibility, and bioapplication studies are discussed. Finally, a perspective for the future use of these novel nanomaterials in the biomedical field is provided.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31828065

RESUMO

Functional and stimuli-responsive nanofibers with an enhanced surface area/volume ratio provide controlled and triggered drug release with higher efficacy. In this study, chemotherapeutic agent Rose Bengal (RB) (4,5,6,7-tetrachloro-2', 4',5',7'-tetraiodofluoresceindisodium)-loaded water-soluble polyvinyl alcohol (PVA) nanofibers were synthesized by using the electrospinning method. A thin layer of poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) p(4VP-co-EGDMA) was deposited on the RB-loaded nanofibers (PVA-RB) via initiated chemical vapor deposition (iCVD), coating the fiber surfaces to provide controllable solubility and pH response to the nanofibers. The uncoated and [p(4VP-co-EGDMA)-PVA] coated PVA-RB nanofiber mats were studied at different pH values to analyze their degradation and drug release profiles. The coated nanofibers demonstrated high stability at neutral and basic pH values for long incubation durations of 72 h, whereas the uncoated nanofibers dissolved in <2 h. The drug release studies showed that the RB release from coated PVA-RB nanofibers was higher at neutral and basic pH values, and proportional to the pH of the solution, whereas the degradation and RB release rates from the uncoated PVA-RB nanofibers were significantly higher and did not depend on the pH of environment. Further analysis of the release kinetics using the Peppas model showed that while polymer swelling and dissolution were the dominant mechanisms for the uncoated nanofibers, for the coated nanofibers, Fickian diffusion was the dominant release mechanism. The biocompatibility and therapeutic efficiency of the coated PVA-RB nanofibers against brain cancer was investigated on glioblastoma multiforme cancer cells (U87MG). The coated PVA nanofibers were observed to be highly biocompatible, and they significantly stimulated the ROS production in cells, increasing apoptosis. These promising results confirmed the therapeutic activity of the coated PVA-RB nanofibers on brain cancer cells, and encouraged their further evaluation as drug carrier structures in brain cancer treatment.

12.
Artigo em Inglês | MEDLINE | ID: mdl-29977891

RESUMO

Hexagonal boron nitrides (hBNs) have recently been investigated for several novel applications due to their unique properties such as biocompatibility, superhydrophobicity, electrical insulation, and thermal and chemical stability. In addition, their biodegradation products have recently reported to have therapeutic effect on certain cancer types. hBNs are easily synthesized from boron and nitrogen precursors at moderately low temperatures. However, crystallinity and yield vary depending on the type of precursor, reaction temperature, and duration. In this study, a simple one-step hBNs synthesis method is reported without a catalyst, which might be an undesired contaminant for biomedical applications. The influence of boron precursors (boric acid, colemanite, or boron trioxide) on hBNs crystallinity, stability, and biodegradation in suspensions containing oxidative and hydrolytic degradation agents is investigated with the aim of their possible application in biomedicine. We found that the choice of boron precursor is a critically important parameter controlling the hBNs crystallinity and dependently influencing the biodegradation rate.

13.
Nanomedicine (Lond) ; 12(7): 797-810, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28322118

RESUMO

AIM: Boron nitride nanotubes (BNNTs) and hexagonal boron nitrides (hBNs) are novel nanostructures with high mechanical strengths, large surface areas and excellent biocompatibilities. Here, the potential use of BNNTs and hBNs as nanocarriers was comparatively investigated for use with cancer drugs. MATERIALS & METHODS: Doxorubicin (Dox) and folate are used as model drugs and targeting agents, respectively. RESULTS & DISCUSSION: The obtained results indicate that BNNTs have about a threefold higher Dox loading capacity than hBNs. It was also found that cellular uptake of folate-Dox-BNNTs was much higher when compared with Dox-BNNTs for HeLa cells, due to the presence of folate receptors on the cell surface, leading to increased cancer cell death. In summary, folate and Dox conjugated BNNTs are promising agents in nanomedicine and may have potential drug delivery applications.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/química , Nanoestruturas/química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos , Ácido Fólico/química , Ácido Fólico/farmacologia , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia de Fluorescência , Imagem Molecular , Nanotubos/química
14.
Carbohydr Polym ; 151: 313-320, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27474572

RESUMO

With their low toxicity, high mechanical strength and chemical stability, boron nitride nanotubes (BNNTs) are good candidates to enhance the properties of polymers, composites and scaffolds. Chitosan-based scaffolds are exhaustively investigated in tissue engineering because of their biocompatibility and antimicrobial activity. However, their spontaneous degradation prevents their use in a range of tissue engineering applications. In this study, hydroxylated BNNTs (BNNT-OH) were included into a chitosan scaffold and tested for their mechanical strength, swelling behavior and biodegradability. The results show that inclusion of BNNTs-OH into the chitosan scaffold increases the mechanical strength and pore size at values optimal for high cellular proliferation and adhesion. The chitosan/BNNT-OH scaffold was also found to be non-toxic to Human Dermal Fibroblast (HDF) cells due to its slow degradation rate. HDF cell proliferation and adhesion were increased as compared to the chitosan-only scaffold as observed by scanning electron microscopy (SEM) and fluorescent microscopy images.


Assuntos
Compostos de Boro/química , Quitosana/química , Fibroblastos/efeitos dos fármacos , Nanotubos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Compostos de Boro/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quitosana/farmacologia , Fibroblastos/fisiologia , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
15.
Colloids Surf B Biointerfaces ; 134: 440-6, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26222410

RESUMO

Boron nitride nanotubes (BNNTs) are composed of boron and nitrogen atoms and they show significantly different properties from their carbon analogues (carbon nanotubes, CNTs). Due to their unique properties including low electrical conductivity, and imaging contrast and neutron capture properties; they can be used in biomedical applications. When their use in biological fields is considered, the route of their toxic effect should be clarified. Therefore, the study of interactions between BNNTs and living systems is important in envisaging biological applications at both cellular and sub-cellular levels to fully gain insights of their potential adverse effects. In this study, BNNTs were modified with lactose, glucose and starch and tested for their cytotoxicity. First, the interactions and the behavior of BNNTs with bovine serum albumin (BSA), Dulbecco's Modified Eagle's Medium (DMEM) and DMEM/Nutrient Mixture F-12Ham were investigated. Thereafter, their cellular uptake and the cyto- and genotoxicity on human dermal fibroblasts (HDFs) and adenocarcinoma human alveolar basal epithelial cells (A549) were evaluated. HDFs and A549 cells internalized the modified and unmodified BNNTs, and BNNTs were found to not cause significant viability change and DNA damage. A higher uptake rate of BNNTs by A549 cells compared to HDFs was observed. Moreover, a concentration-dependent cytotoxicity was observed on A549 cells while they were safer for HDFs in the same concentration range. Based on these findings, it can be concluded that BNNTs and their derivatives made with biomacromolecules might be good candidates for several applications in medicine and biomedical applications.


Assuntos
Compostos de Boro/química , Carboidratos/química , Nanotubos , Materiais Biocompatíveis , Linhagem Celular , Humanos , Microscopia Eletrônica de Transmissão
16.
Beilstein J Nanotechnol ; 6: 84-102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671154

RESUMO

Boron nitride nanotubes (BNNTs) have been increasingly investigated for use in a wide range of applications due to their unique physicochemical properties including high hydrophobicity, heat and electrical insulation, resistance to oxidation, and hydrogen storage capacity. They are also valued for their possible medical and biomedical applications including drug delivery, use in biomaterials, and neutron capture therapy. In this review, BNNT synthesis methods and the surface modification strategies are first discussed, and then their toxicity and application studies are summarized. Finally, a perspective for the future use of these novel materials is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA