Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 509(7500): 349-52, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24828193

RESUMO

Temporally inconsistent and potentially unreliable global historical data hinder the detection of trends in tropical cyclone activity. This limits our confidence in evaluating proposed linkages between observed trends in tropical cyclones and in the environment. Here we mitigate this difficulty by focusing on a metric that is comparatively insensitive to past data uncertainty, and identify a pronounced poleward migration in the average latitude at which tropical cyclones have achieved their lifetime-maximum intensity over the past 30 years. The poleward trends are evident in the global historical data in both the Northern and the Southern hemispheres, with rates of 53 and 62 kilometres per decade, respectively, and are statistically significant. When considered together, the trends in each hemisphere depict a global-average migration of tropical cyclone activity away from the tropics at a rate of about one degree of latitude per decade, which lies within the range of estimates of the observed expansion of the tropics over the same period. The global migration remains evident and statistically significant under a formal data homogenization procedure, and is unlikely to be a data artefact. The migration away from the tropics is apparently linked to marked changes in the mean meridional structure of environmental vertical wind shear and potential intensity, and can plausibly be linked to tropical expansion, which is thought to have anthropogenic contributions.


Assuntos
Tempestades Ciclônicas/estatística & dados numéricos , Mapeamento Geográfico , Clima Tropical , Vento , Geografia , Aquecimento Global/estatística & dados numéricos , Atividades Humanas
2.
Proc Natl Acad Sci U S A ; 114(45): 11861-11866, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078274

RESUMO

The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970-2005 to 4.0-5.1 m above mean tidal level by 2080-2100 and ranges from 5.0-15.4 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970-2005 and further decreases to ∼5 y by 2030-2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280-2300 for scenarios that include Antarctica's potential partial collapse.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Tempestades Ciclônicas , Inundações , Desastres , Modelos Teóricos , Cidade de Nova Iorque , Oceanos e Mares
3.
Proc Natl Acad Sci U S A ; 114(24): 6221-6226, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559352

RESUMO

Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.


Assuntos
Clima , Simulação por Computador , Tempestades Ciclônicas , Poeira , Ecossistema , África do Norte , Mudança Climática , História Antiga , Umidade , Plantas
4.
Proc Natl Acad Sci U S A ; 112(41): 12610-5, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417111

RESUMO

In a changing climate, future inundation of the United States' Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850-1800) and anthropogenic era (A.D.1970-2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.


Assuntos
Mudança Climática , Tempestades Ciclônicas , Desastres , Inundações , Modelos Teóricos , Cidade de Nova Iorque
5.
Proc Natl Acad Sci U S A ; 110(30): 12219-24, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836646

RESUMO

A recently developed technique for simulating large [O(10(4))] numbers of tropical cyclones in climate states described by global gridded data is applied to simulations of historical and future climate states simulated by six Coupled Model Intercomparison Project 5 (CMIP5) global climate models. Tropical cyclones downscaled from the climate of the period 1950-2005 are compared with those of the 21st century in simulations that stipulate that the radiative forcing from greenhouse gases increases by over preindustrial values. In contrast to storms that appear explicitly in most global models, the frequency of downscaled tropical cyclones increases during the 21st century in most locations. The intensity of such storms, as measured by their maximum wind speeds, also increases, in agreement with previous results. Increases in tropical cyclone activity are most prominent in the western North Pacific, but are evident in other regions except for the southwestern Pacific. The increased frequency of events is consistent with increases in a genesis potential index based on monthly mean global model output. These results are compared and contrasted with other inferences concerning the effect of global warming on tropical cyclones.

6.
Sci Bull (Beijing) ; 65(5): 419-424, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659233

RESUMO

The societal impact of extreme winds induced by tropical cyclones (TCs) is a major concern in the Mekong River Basin (MRB). Though no clear trend of landfalling TC intensity along the Vietnam coastline has been observed since the 1970s, climate models project an increasing TC intensity in the 21st century over the Western North Pacific, which is the primary TC source region influencing the MRB. Yet, how future TC activities will affect extreme winds quantitatively in the MRB remains unclear. By employing a novel dynamical downscaling technique using a specialized, coupled ocean-atmospheric model, shorter return periods of maximum wind speed in the MRB for 2081-2100 compared with 1981-2000 are projected based on five global climate models under the RCP8.5 scenario, suggesting increases in the future tropical cyclone intensity. The results point to consistently elevated future TC-related risks that may jeopardize sustainable development, disrupt food supply, and exacerbate conflicts in the region and beyond.

7.
Nat Commun ; 7: 13670, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886199

RESUMO

Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961-2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.

8.
Science ; 363(6425): 342-344, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30679358
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA