Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 113(7): 2555-81, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25652921

RESUMO

Neighboring neurons in cat primary visual cortex (V1) have similar preferred orientation, direction, and spatial frequency. How diverse is their degree of tuning for these properties? To address this, we used single-tetrode recordings to simultaneously isolate multiple cells at single recording sites and record their responses to flashed and drifting gratings of multiple orientations, spatial frequencies, and, for drifting gratings, directions. Orientation tuning width, spatial frequency tuning width, and direction selectivity index (DSI) all showed significant clustering: pairs of neurons recorded at a single site were significantly more similar in each of these properties than pairs of neurons from different recording sites. The strength of the clustering was generally modest. The percent decrease in the median difference between pairs from the same site, relative to pairs from different sites, was as follows: for different measures of orientation tuning width, 29-35% (drifting gratings) or 15-25% (flashed gratings); for DSI, 24%; and for spatial frequency tuning width measured in octaves, 8% (drifting gratings). The clusterings of all of these measures were much weaker than for preferred orientation (68% decrease) but comparable to that seen for preferred spatial frequency in response to drifting gratings (26%). For the above properties, little difference in clustering was seen between simple and complex cells. In studies of spatial frequency tuning to flashed gratings, strong clustering was seen among simple-cell pairs for tuning width (70% decrease) and preferred frequency (71% decrease), whereas no clustering was seen for simple-complex or complex-complex cell pairs.


Assuntos
Neurônios/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Potenciais de Ação , Animais , Gatos , Feminino , Masculino , Estimulação Luminosa
2.
J Neurosci Methods ; 332: 108539, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31805301

RESUMO

BACKGROUND: Peripheral nerve interfaces have emerged as alternative solutions for a variety of therapeutic and performance improvement applications. The Defense Advanced Research Projects Agency (DARPA) has widely invested in these interfaces to provide motor control and sensory feedback to prosthetic limbs, identify non-pharmacological interventions to treat disease, and facilitate neuromodulation to accelerate learning or improve performance on cognitive, sensory, or motor tasks. In this commentary, we highlight some of the design considerations for optimizing peripheral nerve interfaces depending on the application space. We also discuss the ethical considerations that accompany these advances.


Assuntos
Membros Artificiais , Retroalimentação Sensorial , Nervos Periféricos , Prescrições
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA