RESUMO
The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.
Assuntos
Adaptação Fisiológica/genética , Genoma Fúngico/fisiologia , Nicotiana/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Verticillium/genética , Verticillium/patogenicidade , Genômica , Nicotiana/genéticaRESUMO
The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution.
Assuntos
Cromossomos Humanos Par 8/genética , Evolução Molecular , Animais , Mapeamento de Sequências Contíguas , DNA Satélite/genética , Defensinas/genética , Eucromatina/genética , Feminino , Humanos , Imunidade Inata/genética , Masculino , Dados de Sequência Molecular , Família Multigênica/genética , Análise de Sequência de DNARESUMO
Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.
Assuntos
Cromossomos Humanos Par 15/genética , Evolução Molecular , Duplicação Gênica , Animais , Sequência Conservada/genética , Genes , Genoma Humano , Haplótipos/genética , Humanos , Macaca mulatta/genética , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Polimorfismo Genético/genética , Análise de Sequência de DNA , Sintenia/genéticaRESUMO
Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99-880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin-proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14alpha-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.
Assuntos
Duplicação Gênica , Genoma Fúngico , Genômica , Mucormicose/microbiologia , Rhizopus/genética , Elementos de DNA Transponíveis , Proteínas Fúngicas/genética , Fungos/classificação , Fungos/genética , Humanos , Filogenia , Rhizopus/química , Rhizopus/classificação , Rhizopus/isolamento & purificaçãoRESUMO
Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.
Assuntos
Hibridização Genômica Comparativa , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Sequência de Bases , Francisella tularensis/isolamento & purificação , Genes Bacterianos/genética , Filogenia , Recombinação Genética , Virulência/genéticaRESUMO
Chromosome 18 appears to have the lowest gene density of any human chromosome and is one of only three chromosomes for which trisomic individuals survive to term. There are also a number of genetic disorders stemming from chromosome 18 trisomy and aneuploidy. Here we report the finished sequence and gene annotation of human chromosome 18, which will allow a better understanding of the normal and disease biology of this chromosome. Despite the low density of protein-coding genes on chromosome 18, we find that the proportion of non-protein-coding sequences evolutionarily conserved among mammals is close to the genome-wide average. Extending this analysis to the entire human genome, we find that the density of conserved non-protein-coding sequences is largely uncorrelated with gene density. This has important implications for the nature and roles of non-protein-coding sequence elements.
Assuntos
Cromossomos Humanos Par 18/genética , DNA/genética , Aneuploidia , Animais , Sequência Conservada/genética , Ilhas de CpG/genética , Éxons/genética , Etiquetas de Sequências Expressas , Genes/genética , Genoma Humano , Humanos , Íntrons/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , SinteniaRESUMO
The effective control of tuberculosis (TB) has been thwarted by the need for prolonged, complex and potentially toxic drug regimens, by reliance on an inefficient vaccine and by the absence of biomarkers of clinical status. The promise of the genomics era for TB control is substantial, but has been hindered by the lack of a central repository that collects and integrates genomic and experimental data about this organism in a way that can be readily accessed and analyzed. The Tuberculosis Database (TBDB) is an integrated database providing access to TB genomic data and resources, relevant to the discovery and development of TB drugs, vaccines and biomarkers. The current release of TBDB houses genome sequence data and annotations for 28 different Mycobacterium tuberculosis strains and related bacteria. TBDB stores pre- and post-publication gene-expression data from M. tuberculosis and its close relatives. TBDB currently hosts data for nearly 1500 public tuberculosis microarrays and 260 arrays for Streptomyces. In addition, TBDB provides access to a suite of comparative genomics and microarray analysis software. By bringing together M. tuberculosis genome annotation and gene-expression data with a suite of analysis tools, TBDB (http://www.tbdb.org/) provides a unique discovery platform for TB research.
Assuntos
Bases de Dados Genéticas , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Pesquisa Biomédica , Gráficos por Computador , Expressão Gênica , Genoma Bacteriano , Genômica , Humanos , Mycobacterium tuberculosis/metabolismo , Integração de Sistemas , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológicoRESUMO
One of the hallmarks of the Gram-negative bacterium Pseudomonas aeruginosa is its ability to thrive in diverse environments that includes humans with a variety of debilitating diseases or immune deficiencies. Here we report the complete sequence and comparative analysis of the genomes of two representative P. aeruginosa strains isolated from cystic fibrosis (CF) patients whose genetic disorder predisposes them to infections by this pathogen. The comparison of the genomes of the two CF strains with those of other P. aeruginosa presents a picture of a mosaic genome, consisting of a conserved core component, interrupted in each strain by combinations of specific blocks of genes. These strain-specific segments of the genome are found in limited chromosomal locations, referred to as regions of genomic plasticity. The ability of P. aeruginosa to shape its genomic composition to favor survival in the widest range of environmental reservoirs, with corresponding enhancement of its metabolic capacity is supported by the identification of a genomic island in one of the sequenced CF isolates, encoding enzymes capable of degrading terpenoids produced by trees. This work suggests that niche adaptation is a major evolutionary force influencing the composition of bacterial genomes. Unlike genome reduction seen in host-adapted bacterial pathogens, the genetic capacity of P. aeruginosa is determined by the ability of individual strains to acquire or discard genomic segments, giving rise to strains with customized genomic repertoires. Consequently, this organism can survive in a wide range of environmental reservoirs that can serve as sources of the infecting organisms.
Assuntos
Fibrose Cística/complicações , Meio Ambiente , Evolução Molecular , Genoma Bacteriano , Filogenia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Sequência de Bases , Genômica , Humanos , Dados de Sequência Molecular , Infecções por Pseudomonas/etiologia , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
SUMMARY: Combo is a comparative genome browser that provides a dynamic view of whole genome alignments along with their associated annotations. Combo provides two different visualization perspectives. The perpendicular (dot plot) view provides a dot plot of genome alignments synchronized with a display of genome annotations along each axis. The parallel view displays two genome annotations horizontally, synchronized through a panel displaying local alignments as trapezoids. Users can zoom to any resolution, from whole chromosomes to individual bases. They can select, highlight and view detailed information from specific alignments and annotations. Combo is an organism agnostic and can import data from a variety of file formats. AVAILABILITY: Combo is integrated as part of the Argo Genome Browser which also provides single-genome browsing and editing capabilities. Argo is written in Java, runs on multiple platforms and is freely available for download at http://www.broad.mit.edu/annotation/argo/.
Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Interface Usuário-Computador , Sequência de Bases , Gráficos por Computador , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Armazenamento e Recuperação da Informação/métodos , Dados de Sequência MolecularRESUMO
BACKGROUND: The Gram-negative bacterium Burkholderia pseudomallei (Bp) is the causative agent of the human disease melioidosis. To understand the evolutionary mechanisms contributing to Bp virulence, we performed a comparative genomic analysis of Bp K96243 and B. thailandensis (Bt) E264, a closely related but avirulent relative. RESULTS: We found the Bp and Bt genomes to be broadly similar, comprising two highly syntenic chromosomes with comparable numbers of coding regions (CDs), protein family distributions, and horizontally acquired genomic islands, which we experimentally validated to be differentially present in multiple Bt isolates. By examining species-specific genomic regions, we derived molecular explanations for previously-known metabolic differences, discovered potentially new ones, and found that the acquisition of a capsular polysaccharide gene cluster in Bp, a key virulence component, is likely to have occurred non-randomly via replacement of an ancestral polysaccharide cluster. Virulence related genes, in particular members of the Type III secretion needle complex, were collectively more divergent between Bp and Bt compared to the rest of the genome, possibly contributing towards the ability of Bp to infect mammalian hosts. An analysis of pseudogenes between the two species revealed that protein inactivation events were significantly biased towards membrane-associated proteins in Bt and transcription factors in Bp. CONCLUSION: Our results suggest that a limited number of horizontal-acquisition events, coupled with the fine-scale functional modulation of existing proteins, are likely to be the major drivers underlying Bp virulence. The extensive genomic similarity between Bp and Bt suggests that, in some cases, Bt could be used as a possible model system for studying certain aspects of Bp behavior.
Assuntos
Burkholderia pseudomallei/genética , Burkholderia/genética , Genoma Bacteriano , Burkholderia/classificação , Burkholderia/metabolismo , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/metabolismo , Filogenia , VirulênciaRESUMO
The Tuberculosis Database (TBDB) is an online database providing integrated access to genome sequence, expression data and literature curation for TB. TBDB currently houses genome assemblies for numerous strains of Mycobacterium tuberculosis (MTB) as well assemblies for over 20 strains related to MTB and useful for comparative analysis. TBDB stores pre- and post-publication gene-expression data from M. tuberculosis and its close relatives, including over 3000 MTB microarrays, 95 RT-PCR datasets, 2700 microarrays for human and mouse TB related experiments, and 260 arrays for Streptomyces coelicolor. To enable wide use of these data, TBDB provides a suite of tools for searching, browsing, analyzing, and downloading the data. We provide here an overview of TBDB focusing on recent data releases and enhancements. In particular, we describe the recent release of a Global Genetic Diversity dataset for TB, support for short-read re-sequencing data, new tools for exploring gene expression data in the context of gene regulation, and the integration of a metabolic network reconstruction and BioCyc with TBDB. By integrating a wide range of genomic data with tools for their use, TBDB is a unique platform for both basic science research in TB, as well as research into the discovery and development of TB drugs, vaccines and biomarkers.
Assuntos
Bases de Dados Genéticas , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Bases de Dados Genéticas/tendências , Regulação Bacteriana da Expressão Gênica , Variação Genética , Genoma Bacteriano , Biblioteca Genômica , Genômica/métodos , Humanos , Redes e Vias Metabólicas/genética , Mycobacterium tuberculosis/metabolismo , Sistemas On-LineRESUMO
Methanogenesis, the biological production of methane, plays a pivotal role in the global carbon cycle and contributes significantly to global warming. The majority of methane in nature is derived from acetate. Here we report the complete genome sequence of an acetate-utilizing methanogen, Methanosarcina acetivorans C2A. Methanosarcineae are the most metabolically diverse methanogens, thrive in a broad range of environments, and are unique among the Archaea in forming complex multicellular structures. This diversity is reflected in the genome of M. acetivorans. At 5,751,492 base pairs it is by far the largest known archaeal genome. The 4524 open reading frames code for a strikingly wide and unanticipated variety of metabolic and cellular capabilities. The presence of novel methyltransferases indicates the likelihood of undiscovered natural energy sources for methanogenesis, whereas the presence of single-subunit carbon monoxide dehydrogenases raises the possibility of nonmethanogenic growth. Although motility has not been observed in any Methanosarcineae, a flagellin gene cluster and two complete chemotaxis gene clusters were identified. The availability of genetic methods, coupled with its physiological and metabolic diversity, makes M. acetivorans a powerful model organism for the study of archaeal biology. [Sequence, data, annotations and analyses are available at http://www-genome.wi.mit.edu/.]
Assuntos
Variação Genética , Genoma Arqueal , Methanosarcina/genética , Proteínas Arqueais/genética , Proteínas Arqueais/fisiologia , Monóxido de Carbono/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Euryarchaeota/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Hidrogênio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Methanosarcina/fisiologia , Dados de Sequência Molecular , Família Multigênica/genética , Família Multigênica/fisiologia , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Oxigênio/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/genética , Biossíntese de Proteínas/fisiologia , Origem de Replicação/genética , Origem de Replicação/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcrição GênicaRESUMO
Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes--more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca2+ signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.