Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Pediatr Nephrol ; 37(11): 2657-2665, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35211789

RESUMO

BACKGROUND: Autosomal recessive polycystic kidney disease is a cystic kidney disease with early onset and clinically characterized by enlarged echogenic kidneys, hypertension, varying degrees of kidney dysfunction, and liver fibrosis. It is most frequently caused by sequence variants in the PKHD1 gene, encoding fibrocystin. In more rare cases, sequence variants in DZIP1L are seen, encoding the basal body protein DAZ interacting protein 1-like protein (DZIP1L). So far, only four different DZIP1L variants have been reported. METHODS: Four children from three consanguineous families presenting with polycystic kidney disease were selected for targeted or untargeted exome sequencing. RESULTS: We identified two different, previously not reported homozygous DZIP1L sequence variants: c.193 T > C; p.(Cys65Arg), and c.216C > G; p.(Cys72Trp). Functional analyses of the c.216C > G; p.(Cys72Trp) variant indicated mislocalization of mutant DZIP1L. CONCLUSIONS: In line with published data, our results suggest a critical role of the N-terminal domain for proper protein function. Although patients with PKHD1-associated autosomal recessive polycystic kidney disease often have liver abnormalities, none of the present four patients showed any clinically relevant liver involvement. Our data demonstrate the power and efficiency of next-generation sequencing-based approaches. While DZIP1L-related polycystic kidney disease certainly represents a rare form of the disease, our results emphasize the importance of including DZIP1L in multigene panels and in the data analysis of whole-exome sequencing for cystic kidney diseases. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Rim Policístico Autossômico Recessivo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Criança , Consanguinidade , Testes Genéticos/métodos , Humanos , Mutação , Rim Policístico Autossômico Recessivo/diagnóstico , Rim Policístico Autossômico Recessivo/genética , Receptores de Superfície Celular/genética , Sequenciamento do Exoma
2.
Am J Med Genet A ; 185(5): 1366-1378, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33522091

RESUMO

Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage-sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi-faceted complications due to haploinsufficiency of BPTF.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Epilepsia/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Epilepsia/fisiopatologia , Fácies , Feminino , Haploinsuficiência/genética , Humanos , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Masculino , Microcefalia/fisiopatologia , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Fatores de Transcrição/genética , Adulto Jovem
3.
Am J Physiol Renal Physiol ; 319(3): F380-F393, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32628538

RESUMO

Euryhaline teleost kidneys undergo a major functional switch from being filtratory in freshwater (FW) to being predominantly secretory in seawater (SW) conditions. The transition involves both vascular and tubular effects. There is consensus that the glomerular filtration rate is greatly reduced upon exposure to hyperosmotic conditions. Yet, regulation at the tubular level has only been examined sporadically in a few different species. This study aimed to obtain a broader understanding of transcriptional regulation in proximal versus distal tubular segments during osmotic transitions. Proximal and distal tubule cells were dissected separately by laser capture microdissection, RNA was extracted, and relative mRNA expression levels of >30 targets involved in solute and water transport were quantified by quantitative PCR in relation to segment type in fish acclimated to FW or SW. The gene categories were aquaporins, solute transporters, fxyd proteins, and tight junction proteins. aqp8bb1, aqp10b1, nhe3, sglt1, slc41a1, cnnm3, fxyd12a, cldn3b, cldn10b, cldn15a, and cldn12 were expressed at a higher level in proximal compared with distal tubules. aqp1aa, aqp1ab, nka-a1a, nka-a1b, nkcc1a, nkcc2, ncc, clc-k, slc26a6C, sglt2, fxyd2, cldn3a, and occln were expressed at a higher level in distal compared with proximal tubules. Expression of aqp1aa, aqp3a1, aqp10b1, ncc, nhe3, cftr, sglt1, slc41a1, fxyd12a, cldn3a, cldn3b, cldn3c, cldn10b, cldn10e, cldn28a, and cldn30c was higher in SW- than in FW-acclimated salmon, whereas the opposite was the case for aqp1ab, slc26a6C, and fxyd2. The data show distinct segmental distribution of transport genes and a significant regulation of tubular transcripts when kidney function is modulated during salinity transitions.


Assuntos
Aclimatação/fisiologia , Túbulos Renais/metabolismo , Salmo salar , Animais , Água Doce , Regulação da Expressão Gênica , Imuno-Histoquímica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água do Mar , Transcriptoma , Equilíbrio Hidroeletrolítico
4.
J Comp Physiol B ; 185(2): 207-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25491777

RESUMO

Most vertebrate nephrons possess an inherited ability to secrete fluid in normal or pathophysiological states. We hypothesized that renal aquaporin expression and localization are functionally regulated in response to seawater and during smoltification in Atlantic salmon and thus reflect a shift in renal function from filtration towards secretion. We localized aquaporins (Aqp) in Atlantic salmon renal tubular segments by immunohistochemistry and monitored their expressional dynamics using RT-PCR and immunoblotting. Three aquaporins: Aqpa1aa, Aqp1ab and Aqp8b and two aquaglyceroporins Aqp3a and Aqp10b were localized in the kidney of salmon. The staining for all aquaporins was most abundant in the proximal kidney tubules and there was no clear effect of salinity or developmental stage on localization pattern. Aqp1aa and Aqp3a were abundant apically but extended throughout the epithelial cells. Aqp10b was expressed apically and along the lateral membrane. Aqp8b was mainly basolateral and Aqp1ab was located in sub-apical intracellular compartments. mRNAs of aqp8b and aqp10b were higher in FW smolts compared to FW parr, whereas the opposite was true for aqp1aa. Aqp mRNA levels changed in response to both SW and sham transfer. Protein levels, however, were stable for most paralogs. In conclusion, aquaporins are abundant in salmon proximal renal tubules and may participate in water secretion and thus urine modification as suggested for other vertebrates. Further studies should seek to couple functional measurements of single nephrons to expression and localization of Aqps in the salmonid kidney.


Assuntos
Aquaporinas/metabolismo , Túbulos Renais Proximais/metabolismo , Salmo salar/metabolismo , Animais , Aquaporinas/genética , Regulação da Expressão Gênica , Salinidade , Estresse Fisiológico
5.
Front Physiol ; 2: 51, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21897821

RESUMO

WATER BALANCE IN TELEOST FISH IS MAINTAINED WITH CONTRIBUTIONS FROM THE MAJOR OSMOREGULATORY ORGANS: intestine, gills, and kidney. Overall water fluxes have been studied in all of these organs but not until recently has it become possible to approach the mechanisms of water transport at the molecular level. This mini-review addresses the role of the kidney in osmoregulation with special emphasis on euryhaline teleosts. After a short review of current knowledge of renal functional morphology and regulation, we turn the focus to recent molecular investigations of the role of aquaporins in water and solute transport in the teleost kidney. We conclude that there is much to be achieved in understanding water transport and its regulation in the teleost kidney and that effort should be put into systematic mapping of aquaporins to their tubular as well as cellular localization.

6.
Front Physiol ; 2: 56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21941512

RESUMO

Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along with an investigation of the distribution and cellular localization of three aquaporins (Aqp1aa, -1ab, and -8ab) in pyloric caeca, middle (M), and posterior (P) intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (J(v)) was higher in SW than FW-trout and was inhibited by (mmol L(-1)): 0.1 KCN (41%), 0.1 ouabain (72%), and 0.1 bumetanide (82%) suggesting that active transport, Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-)-co-transport are involved in establishing the driving gradient for water transport. J(v) was also inhibited by 1 mmol L(-1) HgCl(2), serosally (23% in M and 44% in P), mucosally (27% in M), or both (61% in M and 58% in P), suggesting involvement of both apical and basolateral aquaporins in water transport. The inhibition was antagonized by 5 mmol L(-1) mercaptoethanol. By comparison, 10 mmol L(-1) mucosal tetraethylammonium, an inhibitor of certain aquaporins, inhibited J(v) by 20%. In the presence of glucose, mucosal addition of phloridzin inhibited water transport by 20%, suggesting that water transport is partially linked to the Na(+)-glucose co-transporter. Using polyclonal antibodies against salmon Aqp1aa, -1ab, and -8ab, we detected Aqp1aa, and -1ab immunoreactivity in the brush border and sub-apical region of enterocytes in all intestinal segments. The Aqp8ab antibody showed a particularly strong immunoreaction in the brush border and sub-apical region of enterocytes throughout the intestine and also stained lateral membranes and peri-nuclear regions though at lower intensity. The present localization of three aquaporins in both apical and lateral membranes of salmonid enterocytes facilitates a model for transcellular water transport in the intestine of SW-acclimated salmonids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA