Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 30(11): 2689-2705, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33830574

RESUMO

In the built environment, fungi can cause important deterioration of building materials and have adverse health effects on occupants. Increased knowledge about indoor mycobiomes from different regions of the world, and their main environmental determinants, will enable improved indoor air quality management and identification of health risks. This is the first citizen science study of indoor mycobiomes at a large geographical scale in Europe, including 271 houses from Norway and 807 dust samples from three house compartments: outside of the building, living room and bathroom. The fungal community composition determined by DNA metabarcoding was clearly different between indoor and outdoor samples, but there were no significant differences between the two indoor compartments. The 32 selected variables, related to the outdoor environment, building features and occupant characteristics, accounted for 15% of the overall variation in community composition, with the house compartment as the key factor (7.6%). Next, climate was the main driver of the dust mycobiomes (4.2%), while building and occupant variables had significant but minor influences (1.4% and 1.1%, respectively). The house-dust mycobiomes were dominated by ascomycetes (⁓70%) with Capnodiales and Eurotiales as the most abundant orders. Compared to the outdoor samples, the indoor mycobiomes showed higher species richness, which is probably due to the mixture of fungi from outdoor and indoor sources. The main indoor indicator fungi belonged to two ecological groups with allergenic potential: xerophilic moulds and skin-associated yeasts. Our results suggest that citizen science is a successful approach for unravelling the built microbiome at large geographical scales.


Assuntos
Ciência do Cidadão , Micobioma , Poeira/análise , Europa (Continente) , Fungos/genética , Micobioma/genética , Noruega
2.
BMC Evol Biol ; 11: 230, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21816066

RESUMO

BACKGROUND: The fungal genus Serpula (Serpulaceae, Boletales) comprises several saprotrophic (brown rot) taxa, including the aggressive house-infecting dry rot fungus Serpula lacrymans. Recent phylogenetic analyses have indicated that the ectomycorrhiza forming genera Austropaxillus and Gymnopaxillus cluster within Serpula. In this study we use DNA sequence data to investigate phylogenetic relationships, historical biogeography of, and nutritional mode transitions in Serpulaceae. RESULTS: Our results corroborate that the two ectomycorrhiza-forming genera, Austropaxillus and Gymnopaxillus, form a monophyletic group nested within the saprotrophic genus Serpula, and that the Serpula species S. lacrymans and S. himantioides constitute the sister group to the Austropaxillus-Gymnopaxillus clade. We found that both vicariance (Beringian) and long distance dispersal events are needed to explain the phylogeny and current distributions of taxa within Serpulaceae. Our results also show that the transition from brown rot to mycorrhiza has happened only once in a monophyletic Serpulaceae, probably between 50 and 22 million years before present. CONCLUSIONS: This study supports the growing understanding that the same geographical barriers that limit plant- and animal dispersal also limit the spread of fungi, as a combination of vicariance and long distance dispersal events are needed to explain the present patterns of distribution in Serpulaceae. Our results verify the transition from brown rot to ECM within Serpulaceae between 50 and 22 MyBP.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Evolução Molecular , Filogenia , Sequência de Aminoácidos , Sequência de Bases , Basidiomycota/química , Basidiomycota/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Alinhamento de Sequência
3.
Microbiome ; 9(1): 220, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753520

RESUMO

BACKGROUND: Children spend considerable time in daycare centers in parts of the world and are exposed to the indoor micro- and mycobiomes of these facilities. The level of exposure to microorganisms varies within and between buildings, depending on occupancy, climate, and season. In order to evaluate indoor air quality, and the effect of usage and seasonality, we investigated the spatiotemporal variation in the indoor mycobiomes of two daycare centers. We collected dust samples from different rooms throughout a year and analyzed their mycobiomes using DNA metabarcoding. RESULTS: The fungal community composition in rooms with limited occupancy (auxiliary rooms) was similar to the outdoor samples, and clearly different from the rooms with higher occupancy (main rooms). The main rooms had higher abundance of Ascomycota, while the auxiliary rooms contained comparably more Basidiomycota. We observed a strong seasonal pattern in the mycobiome composition, mainly structured by the outdoor climate. Most markedly, basidiomycetes of the orders Agaricales and Polyporales, mainly reflecting typical outdoor fungi, were more abundant during summer and fall. In contrast, ascomycetes of the orders Saccharomycetales and Capnodiales were dominant during winter and spring. CONCLUSIONS: Our findings provide clear evidences that the indoor mycobiomes in daycare centers are structured by occupancy as well as outdoor seasonality. We conclude that the temporal variability should be accounted for in indoor mycobiome studies and in the evaluation of indoor air quality of buildings. Video abstract.


Assuntos
Poluição do Ar em Ambientes Fechados , Micobioma , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Criança , Poeira/análise , Monitoramento Ambiental , Fungos/genética , Humanos , Estações do Ano
4.
Fungal Biol ; 119(10): 940-945, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26399188

RESUMO

In the fungal kingdom there is a high prevalence of morphologically defined species that includes closely related 'cryptic' biological species with similar phenotypes. Due to evolutionary processes like incomplete lineage sorting and introgression through hybridization, several independent DNA markers are essential to resolve closely related fungal species. In this study we wanted to analyze how many independent loci are necessary to reveal the cryptic species, using the genus Serpula as a model system. DNA sequences from ten different DNA loci, eight nuclear and two mitochondrial DNA markers, were obtained from various cryptic species within Serpula. The inclusion of five loci gave a highly confident separation of the cryptic species. Several other loci performed better than the standard DNA barcoding marker ITS in separating the cryptic species. The DNA loci tub, hsp, rpb2 and tef gave, on average, best support for the different cryptic species in single gene trees. We conclude that the analyses of a few but informative independent DNA loci, such as tub, hsp, rpb2 and tef in addition to the standard DNA barcode ITS, may give a good indication about the existence of cryptic species in fungi.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Marcadores Genéticos , Variação Genética , Micologia/métodos , Filogenia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Loci Gênicos , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA