Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Trends Biochem Sci ; 42(5): 395-406, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28254242

RESUMO

Heme is a cofactor that is essential to almost all forms of life. The production of heme is a balancing act between the generation of the requisite levels of the end-product and protection of the cell and/or organism against any toxic substrates, intermediates and, in this case, end-product. In this review, we provide an overview of our understanding of the formation and regulation of this metallocofactor and discuss new research on the cell biology of heme homeostasis, with a focus on putative transmembrane transporters now proposed to be important regulators of heme distribution. The main text is complemented by a discussion dedicated to the intricate chemistry and biochemistry of heme, which is often overlooked when new pathways of heme transport are conceived.


Assuntos
Heme/metabolismo , Homeostase , Animais , Transporte Biológico , Humanos
2.
Proc Natl Acad Sci U S A ; 115(39): 9797-9802, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201715

RESUMO

Metabolically quiescent bacteria represent a large proportion of those in natural and host environments, and they are often refractory to antibiotic treatment. Such drug tolerance is also observed in the laboratory during stationary phase, when bacteria face stress and starvation-induced growth arrest. Tolerance requires (p)ppGpp signaling, which mediates the stress and starvation stringent response (SR), but the downstream effectors that confer tolerance are unclear. We previously demonstrated that the SR is linked to increased antioxidant defenses in Pseudomonas aeruginosa We now demonstrate that superoxide dismutase (SOD) activity is a key factor in SR-mediated multidrug tolerance in stationary-phase P. aeruginosa Inactivation of the SR leads to loss of SOD activity and decreased multidrug tolerance during stationary phase. Genetic or chemical complementation of SOD activity of the ΔrelA spoT mutant (ΔSR) is sufficient to restore antibiotic tolerance to WT levels. Remarkably, we observe high membrane permeability and increased drug internalization upon ablation of SOD activity. Combined, our results highlight an unprecedented mode of SR-mediated multidrug tolerance in stationary-phase P. aeruginosa and suggest that inhibition of SOD activity may potentiate current antibiotics.


Assuntos
Farmacorresistência Bacteriana Múltipla , Pseudomonas aeruginosa/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Gentamicinas/farmacologia , Ligases/metabolismo , Meropeném , Testes de Sensibilidade Microbiana , Ofloxacino/farmacologia , Pseudomonas aeruginosa/enzimologia , Transdução de Sinais , Superóxido Dismutase/fisiologia , Tienamicinas/farmacologia
3.
J Phys Chem A ; 124(4): 746-754, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31894984

RESUMO

Protein maturation by heme insertion is a common post-translation modification of key biological importance. Nonetheless, where and when this maturation occurs in eukaryotic cells remain unknown for most heme proteins. Here, we demonstrate for the first time that the maturation of a chromosomally expressed, endogenous heme protein fused to a green fluorescent protein (GFP) can be tracked in live cells. Selecting yeast cytochrome c peroxidase (Ccp1) as our model heme-binding protein, we first characterized the emission in vitro of recombinant Ccp1-GFP with GFP fused C-terminally to Ccp1 by the linker GRRIPGLIN. Time-correlated single-photon counting reveals a single fluorescence lifetime for heme-free apoCcp1-GFP, τ0 = 2.84 ± 0.01 ns. Heme bound to Ccp1 only partially quenches GFP fluorescence since holoCcp1-GFP exhibits two lifetimes, τ1 = 0.95 ± 0.02 and τ2 = 2.46 ± 0.03 ns with fractional amplitudes a1 = 38 ± 1.5% and a2 = 62 ± 1.5%. Also, τ and a are independent of Ccp1-GFP concentration and solution pH between 5.5 and 8.0, and a standard plot of a1 vs % holoCcp1-GFP in mixtures with apoCcp1-GFP is linear, establishing that the fraction of Ccp1-GFP with heme bound can be determined from a1. Fluorescence lifetime imaging microscopy (FLIM) of live yeast cells chromosomally expressing the same Ccp1-GFP fusion revealed 30% holoCcp1-GFP (i.e., mature Ccp1) and 70% apoCcp1-GFP in agreement with biochemical measurements on cell lysates. Thus, ratiometric fluorescence lifetime measurements offer promise for probing heme-protein maturation in live cells, and we can dispense with the reference fluorophore required for ratiometric intensity-based measurements.

4.
Phys Chem Chem Phys ; 21(27): 14620-14628, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31214677

RESUMO

Oxidation and protonation/deprotonation strongly impact intermolecular noncovalent interactions. For example, S-aromatic interactions are stabilized up to three-fold in the gas phase on oxidation of the sulfur ligand or protonation/deprotonation of the aromatic. To probe if such stabilizing effects are additive and to model interactions of oxidized methionine (MetOn) with protonated histidine and deprotonated tyrosine residues in proteins, we examined Me2SOn (n = 1, 2) binding to imidazolium, phenolate and their 4-methylated forms. Ab initio MP2(full)/6-311++G(d,p) gas-phase calculations reveal that the Me2SOn-imidazolium complexes adopt edge-on geometry with σ-type (N/C-HarO) H-bonding and interaction energies of -17.2 to -31.1 kcal mol-1. The less stable (-13.8 to -21.0 kcal mol-1) Me2SOn-phenolates possess en-face geometry stabilized by π-type (C-Hπar) H-bonding. Comparing these energies with those reported for the Me2S-neutral aromatics affirms the additive effects of ligand protonation/deprotonation and oxidation on gas-phase stability. However, this is not the case in water although the aqueous complexes retain their preferred gas-phase σ- and π-type H-bonded structures. Binding free energies (kcal mol-1) calculated from molecular dynamics simulations in bulk water (preceded by CHARMM36 force field calibration where necessary) reveal that Me2SO-imidazolium (-4.4) is more stable than Me2SO-phenolate (-2.4) but Me2SO2-imidazolium (-0.6) is less stable than Me2SO2-phenolate (-3.8). Vertical ionization potentials (IPV) calculated for the gas-phase complexes indicate that the Me2SOn-phenolates, but not the Me2SOn-imidazoles, are oxidizable under biological conditions. Charge transfer from the phenolate increases its IPV by ∼20%, decreasing its susceptibility to oxidation. Overall, this work provides fundamental data to predict the behaviour of protein-based MetOn-aromatic-ion interactions.


Assuntos
Imidazóis/química , Modelos Químicos , Fenóis/química , Safrol/análogos & derivados , Sulfonas/química , Metabolismo Energético , Simulação de Dinâmica Molecular , Oxirredução , Safrol/química
5.
J Am Chem Soc ; 140(38): 12033-12039, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30145880

RESUMO

LC-MS/MS profiling reveals that the proteoforms of cytochrome c peroxidase (Ccp1) isolated from respiring yeast mitochondria are oxidized at numerous Met, Trp, and Tyr residues. In vitro oxidation of recombinant Ccp1 by H2O2 in the absence of its reducing substrate, ferrocytochrome c, gives rise to similar proteoforms, indicating uncoupling of Ccp1 oxidation and reduction in mitochondria. The oxidative modifications found in the Ccp1 proteoforms are consistent with radical transfer (hole hopping) from the heme along several chains of redox-active residues (Trp, Met, Tyr). These modifications delineate likely hole-hopping pathways to novel substrate-binding sites. Moreover, a decrease in recombinant Ccp1 oxidation by H2O2 in vitro in the presence of glutathione supports a protective role for hole hopping to this antioxidant. Isolation and characterization of extramitochondrial Ccp1 proteoforms reveals that hole hopping from the heme in these proteoforms results in selective oxidation of the proximal heme ligand (H175) and heme labilization. Previously, we demonstrated that this labilized heme is recruited for catalase maturation (Kathiresan, M.; Martins, D.; English, A. M. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 17468-17473; DOI: 10.1073/pnas.1409692111 ). Following heme release, apoCcp1 exits mitochondria, yielding the extramitochondrial proteoforms that we characterize here. The targeting of Ccp1 for selective H175 oxidation may be linked to the phosphorylation status of Y153 close to the heme since pY153 is abundant in certain proteoforms. In sum, when insufficient electrons from ferrocytochrome c are available to Ccp1 in mitochondria, hole hopping from its heme expands its physiological functions. Specifically, we observe an unprecedented hole-hopping sequence for heme labilization and identify hole-hopping pathways from the heme to novel substrates and to glutathione at Ccp1's surface. Furthermore, our results underscore the power of proteoform profiling by LC-MS/MS in exploring the cellular roles of oxidoreductases.


Assuntos
Citocromo-c Peroxidase/metabolismo , Heme/química , Mitocôndrias/metabolismo , Cromatografia Líquida/métodos , Citocromo-c Peroxidase/química , Glutationa/metabolismo , Histidina/química , Peróxido de Hidrogênio/metabolismo , Oxirredução , Proteogenômica , Saccharomyces cerevisiae/enzimologia , Espectrometria de Massas em Tandem/métodos , Tirosina/química
6.
Phys Chem Chem Phys ; 20(35): 23132-23141, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30168822

RESUMO

Noncovalent interactions between Met and aromatic residues define a common Met-aromatic motif in proteins. Met oxidation to MetOn (n = 1 sulfoxide, n = 2 sulfone) alters protein stability and function. To predict the chemical and physical consequences of such oxidations, we modeled the chemistry and redox properties of MetOn-aromatic complexes in depth for comparison with our Met-aromatic models (E. A. Orabi and A. M. English, J. Phys. Chem. B, 2018, 122, 3760). We describe here ab initio quantum mechanical calculations at the MP2(full)/6-311++G(d,p) level of theory on complexes of MetOn (n = 1, 2; modeled by Me2SO and Me2SO2) with models of the side-chains of Phe (benzene, toluene), Trp (indole, 3-methylindole), Tyr (phenol, 4-methylphenol) and His (imidazole, 4-methylimidazole). Binding energies of the global minimum conformers (-3.4 to -11.9 kcal mol-1) indicate that the gas-phase Me2SOn-aromatics are 40-115% more stable than the Me2S-aromatics. Binding of S between the edge and face of the aromatic ring is favored in most complexes as it accommodates both robust σ- and π-type H-bonding. Interactions involving the σ-holes on the S atoms (σ-holeπar and σ-holeNar/Oar), as well as Sπ interactions in the sulfoxides, contribute to complex stability. Complexation modulates the ionization potential (IP) of the interacting fragments with the binding geometry dictating the center oxidized in the Me2SO-aromatics whereas the aromatic is oxidized in the Me2SO2 complexes because of the sulfone's high IP. Potentials of mean force reveal binding free energies of -0.2 to -0.7 kcal mol-1 in bulk water, which indicates that the Me2SOn-aromatics are up to 80% less stable than the corresponding aqueous Me2S-aromatics. Molecular dynamics simulations predict that Me2SOn preferentially interacts with the ring face and expose the dominance of π- vs. σ-type H-bonding in the hydrated complexes as found for the Me2S-aromatics. Our modeling will inform how Met/MetOn-aromatic motifs are determinants of redox-induced changes in proteins.

7.
Proc Natl Acad Sci U S A ; 111(49): 17468-73, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422453

RESUMO

In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1's heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼ 85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification.


Assuntos
Catalase/química , Citocromo-c Peroxidase/química , Heme/química , Mitocôndrias/enzimologia , Respiração Celular , Proteínas de Fluorescência Verde/química , Peróxido de Hidrogênio/química , Membranas Intracelulares/metabolismo , Ferro/química , Ligantes , Microscopia de Fluorescência , Oxirredução , Estresse Oxidativo , Oxigênio/química , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Compostos de Sulfidrila
8.
Biochemistry ; 54(34): 5268-78, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26226318

RESUMO

Atomistic molecular dynamics simulations of diffusion of O2 from the hemes to the external solvent in the α- and ß-subunits of the human hemoglobin (HbA) tetramer reveal transient gas tunnels that are not seen in crystal structures. We find here that the tunnel topology, which encompasses the reported experimental Xe binding cavities, is identical in HbA's T, R, and R2 quaternary states. However, the O2 population in the cavities and the preferred O2 escape portals vary significantly with quaternary structure. For example, most O2 molecules escape from the T ß-subunit via the cavity at the center of the tetramer, but direct exit from the distal heme pocket dominates in the R2 ß-subunit. To understand what triggers the quaternary-linked redistribution of O2 within its tunnels, we examined how the simulated tertiary structure and dynamics of each subunit differs among T, R, and R2 and report that minor adjustments in α-chain dynamics and ß-heme position modulate O2 distribution and escape in HbA. Coupled to the ß-heme position, residue ßF71 undergoes quaternary-linked conformations that strongly regulate O2 migration between the ß-subunit and HbA's central cavity. Remarkably, the distal histidine (HisE7) remains in a closed conformation near the α- and ß-hemes in all states, but this does not prevent an average of 23, 31, and 46% of O2 escapes from the distal heme pockets of T, R, and R2, respectively, via several distal portals, with the balance of escapes occurring via the interior tunnels. Furthermore, preventing or restricting the access of O2 to selected cavities by mutating HisE7 and other heme pocket residues to tryptophan reveals how O2 migration adjusts to the bulky indole ring and sheds light on the experimental ligand binding kinetics of these variants. Overall, our simulations underscore the high gas porosity of HbA in its T, R, and R2 quaternary states and provide new mechanistic insights into why undergoing transitions among these states likely ensures effective O2 delivery by this tetrameric protein.


Assuntos
Hemoglobina A/química , Hemoglobina A/metabolismo , Oxigênio/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Difusão , Heme/química , Humanos , Simulação de Dinâmica Molecular , Análise de Componente Principal , Conformação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas
9.
Biochemistry ; 54(34): 5279-89, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26226401

RESUMO

Hemoglobin transports O2 by binding the gas at its four hemes. Hydrogen bonding between the distal histidine (HisE7) and heme-bound O2 significantly increases the affinity of human hemoglobin (HbA) for this ligand. HisE7 is also proposed to regulate the release of O2 to the solvent via a transient E7 channel. To reveal the O2 escape routes controlled by HisE7 and to evaluate its role in gating heme access, we compare simulations of O2 diffusion from the distal heme pockets of the T and R states of HbA performed with HisE7 in its open (protonated) and closed (neutral) conformations. Irrespective of HisE7's conformation, we observe the same four or five escape routes leading directly from the α- or ß-distal heme pockets to the solvent. Only 21-53% of O2 escapes occur via these routes, with the remainder escaping through routes that encompass multiple internal cavities in HbA. The conformation of the distal HisE7 controls the escape of O2 from the heme by altering the distal pocket architecture in a pH-dependent manner, not by gating the E7 channel. Removal of the HisE7 side chain in the GlyE7 variant exposes the distal pockets to the solvent, and the percentage of O2 escapes to the solvent directly from the α- or ß-distal pockets of the mutant increases to 70-88%. In contrast to O2, the dominant water route from the bulk solvent is gated by HisE7 because protonation and opening of this residue dramatically increase the rate of influx of water into the empty distal heme pockets. The occupancy of the distal heme site by a water molecule, which functions as an additional nonprotein barrier to binding of the ligand to the heme, is also controlled by HisE7. Overall, analysis of gas and water diffusion routes in the subunits of HbA and its GlyE7 variant sheds light on the contribution of distal HisE7 in controlling polar and nonpolar ligand movement between the solvent and the hemes.


Assuntos
Hemoglobina A/química , Hemoglobina A/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Difusão , Heme/química , Hemoglobina A/genética , Histidina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oxigênio/metabolismo , Conformação Proteica , Subunidades Proteicas , Solventes , Água/metabolismo
10.
J Bacteriol ; 195(9): 2011-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23457248

RESUMO

Pseudomonas aeruginosa, a human opportunistic pathogen, possesses a number of antioxidant defense enzymes under the control of multiple regulatory systems. We recently reported that inactivation of the P. aeruginosa stringent response (SR), a starvation stress response controlled by the alarmone (p)ppGpp, caused impaired antioxidant defenses and antibiotic tolerance. Since catalases are key antioxidant enzymes in P. aeruginosa, we compared the levels of H2O2 susceptibility and catalase activity in P. aeruginosa wild-type and ΔrelA ΔspoT (ΔSR) mutant cells. We found that the SR was required for optimal catalase activity and mediated H2O2 tolerance during both planktonic and biofilm growth. Upon amino acid starvation, induction of the SR upregulated catalase activity. Full expression of katA and katB also required the SR, and this regulation occurred through both RpoS-independent and RpoS-dependent mechanisms. Furthermore, overexpression of katA was sufficient to restore H2O2 tolerance and to partially rescue the antibiotic tolerance of ΔSR cells. All together, these results suggest that the SR regulates catalases and that this is an important mechanism in protecting nutrient-starved and biofilm bacteria from H2O2- and antibiotic-mediated killing.


Assuntos
Antibacterianos/metabolismo , Catalase/genética , Peróxido de Hidrogênio/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Fator sigma/genética , Fator sigma/metabolismo , Estresse Fisiológico
11.
Anal Biochem ; 436(2): 66-8, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23376575

RESUMO

As erythrocyte-derived extracellular adenosine triphosphate (ATP) gains recognition as a key vasodilator, its accurate determination is critical. Erythrocytes' high hemoglobin content can act as an inner filter when measuring ATP concentrations by chemiluminescence. We evaluated two approaches to correct for this matrix effect: addition of cell-free hemoglobin to the ATP standards and standard addition of ATP to erythrocyte suspensions. In addition, we reduced sample hematocrit to minimize the absorbance. We conclude that extracellular ATP should be determined in erythrocyte suspensions at 0.06 to 0.004% hematocrit. This gives robust signals without matrix effects and requires only microliters of blood.


Assuntos
Trifosfato de Adenosina/análise , Trifosfato de Adenosina/sangue , Medições Luminescentes/métodos , Animais , Feminino , Hematócrito , Hemoglobinas/análise , Humanos , Medições Luminescentes/normas , Ratos , Ratos Wistar , Suspensões
12.
Nitric Oxide ; 35: 116-22, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24064205

RESUMO

Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Nitritos/metabolismo , Nitroglicerina/farmacologia , Animais , Ditiotreitol/farmacologia , Eritrócitos/enzimologia , Eritrócitos/metabolismo , Humanos , Cinética , Músculos/enzimologia , Músculos/metabolismo , NAD/farmacologia , Nitroglicerina/análogos & derivados , Nitroglicerina/metabolismo , Oxirredutases/efeitos dos fármacos , Oxirredutases/metabolismo , Fosfinas/farmacologia , Coelhos
13.
J Pept Sci ; 19(5): 263-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23532793

RESUMO

Methodology for the rapid N-acylation of aminothiols in aqueous solution using procedures commonly employed in biochemical studies is described here. Glutathione disulfide (GSSG) and homocystine were diN-acetylated in ~100% yield in 0.1 M aqueous NaHCO3 (pH 8.5) at room temperature by 2.5 equiv of the activated ester, N-hydroxysulfosuccinimidyl acetate, an efficient water-soluble acetylating reagent. Following acetone precipitation, diN-acetylGSSG was further purified and desalted on a strong anion-exchange (SAX) cartridge. DiN-acetylhomocystine was simultaneously purified and desalted on a C18 cartridge. The N-acetylated aminothiols were generated using gel-immobilized tris(2-carboxyethyl)phosphine as a reductant, which obviated the need for further purification. Alternatively, disulfide exchange with dissolved dithiothreitol yielded N-acetylglutathione, which was purified on the SAX cartridge. pH titrations of N-acetylglutathione (8.99) and N-acetylhomocysteine (9.66) as well as those of commercially available N-acetylcysteine (9.53) and N-acetylpenicillamine (10.21) yielded pK(a) (SH) values of importance for biological studies.


Assuntos
Acilação , Glutationa/análogos & derivados , Homocisteína/análogos & derivados , Compostos de Sulfidrila/química , Ditiotreitol/química , Glutationa/química , Dissulfeto de Glutationa/química , Homocisteína/química , Homocistina/química , Concentração de Íons de Hidrogênio , Soluções/química , Água/química
14.
Fitoterapia ; 164: 105360, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423882

RESUMO

An ellagitannin monomer, lythracin M (1), and a dimer, lythracin D (2), along with eight known monomers (3-10) were isolated from Lawsonia inermis (Lythraceae) leaves. Lythracin M (1) is a C-glycosidic ellagitannin with a flavogallonyl dilactone moiety that participates in the creation of a γ-lactone ring with the anomeric carbon of the glucose core. Lythracin D (2) was determined as an atropisomer of the reported lythcarin D. These newly discovered structures (1 and 2) were determined by intensive spectroscopic experiments and by comparing DFT-calculated 1H1H coupling, 1H NMR chemical shifts, and ECD data with experimental values. The anti-acetylcholinesterase assay of the compounds 1-10 revealed that the C-1 ellagitannin epimers [casuarinin (7; IC50 = 34 ± 2 nM) and stachyurin (8; IC50 = 56 ± 3 nM)], and the new dimer (2; IC50 = 61 ± 4 nM) possess enzyme inhibitory effects comparable to the reference drug (donepezil, IC50 = 44 ± 3 nM). Molecular docking of compounds 1-10 with AChE identified the free galloyl moiety as an important pharmacophore in the anticholinesterase activity of tannins.


Assuntos
Taninos Hidrolisáveis , Lawsonia (Planta) , Lawsonia (Planta)/química , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Teoria da Densidade Funcional , Estrutura Molecular
15.
J Am Chem Soc ; 134(27): 11177-84, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22690872

RESUMO

The diffusion of small gases to special binding sites within polypeptide matrices pivotally defines the biochemical specificity and reactivity of proteins. We investigate here explicit O(2) diffusion in adult human hemoglobin (HbA) as a case study employing the recently developed temperature-controlled locally enhanced sampling (TLES) method and vary the parameters to greatly increase the simulation efficiency. The method is carefully validated against standard molecular dynamics (MD) simulations and available experimental structural and kinetic data on ligand diffusion in T-state deoxyHbA. The methodology provides a viable alternative approach to traditional MD simulations and/or potential of mean force calculations for: (i) characterizing kinetically accessible diffusion tunnels and escape routes for light ligands in porous proteins; (ii) very large systems when realistic simulations require the inclusion of multiple subunits of a protein; and (iii) proteins that access short-lived conformations relative to the simulation time. In the case of T-state deoxyHbA, we find distinct ligand diffusion tunnels consistent with the experimentally observed disparate Xe cavities in the α- and ß-subunits. We identify two distal barriers including the distal histidine (E7) that control access to the heme. The multiple escape routes uncovered by our simulations call for a review of the current popular hypothesis on ligand escape from hemoglobin. Larger deviations from the crystal structure during simulated diffusion in isolated α- and ß-subunits highlight the dampening effects of subunit interactions and the importance of including all subunits of multisubunit proteins to map realistic kinetically accessible diffusion tunnels and escape routes.


Assuntos
Hemoglobina A/metabolismo , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Adulto , Sítios de Ligação , Difusão , Hemoglobina A/química , Hemoglobinas/química , Humanos , Cinética , Simulação de Dinâmica Molecular , Multimerização Proteica
16.
J Phys Chem B ; 125(1): 137-147, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356279

RESUMO

Long associated with cell death, hydrogen peroxide (H2O2) is now known to perform many physiological roles. Unraveling its biological mechanisms of action requires atomic-level knowledge of its association with proteins and lipids, which we address here. High-level [MP2(full)/6-311++G(3df,3pd)] ab initio calculations reveal skew rotamers as the lowest-energy states of isolated H2O2 (ϕHOOH ∼ 112°) with minimum and maximum electrostatic potentials (kcal/mol) of -24.8 (Vs,min) and 36.5 (Vs,max), respectively. Transition-state, nonpolar trans rotamers (ϕHOOH ∼ 180°) at 1.2 kcal/mol higher in energy are poorer H-bond acceptors (Vs,min = -16.6) than the skew rotamers, while highly polar cis rotamers (ϕHOOH ∼ 0°) at 7.8 kcal/mol are much better H-bond donors (Vs,max = 52.7). Modeling H2O2 association with neutral and charged analogs of protein residues and lipid groups (e.g., ester, phosphate, choline) reveals that skew rotamers (ϕHOOH = 84-122°) are favored in the neutral and cationic complexes, which display gas-phase interaction energies (ECP, kcal/mol) of -1.5 to -18. The neutral and cationic complexes of H2O exhibit a similar range of stabilities (ECP ∼ -1 to -18). However, considerably higher energies (ECP ∼ -14 to -36) are found for the H2O2 complexes of the anionic ligands, which are stabilized by charge-assisted H-bond donation from cis and distorted cis rotamers (ϕHOOH = 0-60°). H2O is a much poorer H-bond donor (Vs,max = 33.4) than cis-H2O2, so its anionic complexes are significantly weaker (ECP ∼ -11 to -20). Thus, by dictating the rotamer preference of H2O2, functional groups in biomolecules can discriminate between H2O2 and H2O. Finally, exploiting the present ab initio data, we calibrated and validated our published molecular mechanics model for H2O2 (Orabi, E. A.; English, A. M. J. Chem. Theory Comput. 2018, 14, 2808-2821) to provide an important tool for simulating H2O2 in biology.


Assuntos
Peróxido de Hidrogênio , Peróxidos , Ligação de Hidrogênio , Lipídeos , Rotação
17.
J Cell Biol ; 168(5): 761-73, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15738267

RESUMO

We describe unusual ergosterol- and ceramide-rich (ECR) domains in the membrane of yeast peroxisomes. Several key features of these detergent-resistant domains, including the nature of their sphingolipid constituent and its unusual distribution across the membrane bilayer, clearly distinguish them from well characterized detergent-insoluble lipid rafts in the plasma membrane. A distinct set of peroxisomal proteins, including two ATPases, Pex1p and Pex6p, as well as phosphoinositide- and GTP-binding proteins, transiently associates with the cytosolic face of ECR domains. All of these proteins are essential for the fusion of the immature peroxisomal vesicles P1 and P2, the earliest intermediates in a multistep pathway leading to the formation of mature, metabolically active peroxisomes. Peroxisome fusion depends on the lateral movement of Pex1p, Pex6p, and phosphatidylinositol-4,5-bisphosphate-binding proteins from ECR domains to a detergent-soluble portion of the membrane, followed by their release to the cytosol. Our data suggest a model for the multistep reorganization of the multicomponent peroxisome fusion machinery that transiently associates with ECR domains.


Assuntos
Ceramidas/metabolismo , Ergosterol/metabolismo , Fusão de Membrana/fisiologia , Peroxissomos/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Detergentes/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fusão de Membrana/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Esfingolipídeos/metabolismo , Yarrowia/metabolismo
18.
Front Microbiol ; 11: 576708, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101252

RESUMO

Stressors and environmental cues shape the physiological state of bacteria, and thus how they subsequently respond to antibiotic toxicity. To understand how superoxide stress can modulate survival to bactericidal antibiotics, we examined the effect of intracellular superoxide generators, paraquat and menadione, on stationary-phase antibiotic tolerance of the opportunistic pathogen, Pseudomonas aeruginosa. We tested how pre-challenge with sublethal paraquat and menadione alters the tolerance to ofloxacin and meropenem in wild-type P. aeruginosa and mutants lacking superoxide dismutase (SOD) activity (sodAB), the paraquat responsive regulator soxR, (p)ppGpp signaling (relA spoT mutant), or the alternative sigma factor rpoS. We confirmed that loss of SOD activity impairs ofloxacin and meropenem tolerance in stationary phase cells, and found that sublethal superoxide generators induce drug tolerance by stimulating SOD activity. This response is rapid, requires de novo protein synthesis, and is RpoS-dependent but does not require (p)ppGpp signaling nor SoxR. We further showed that pre-challenge with sublethal paraquat induces a SOD-dependent reduction in cell-envelope permeability and ofloxacin penetration. Our results highlight a novel mechanism of hormetic protection by superoxide generators, which may have important implications for stress-induced antibiotic tolerance in P. aeruginosa cells.

19.
Sci Rep ; 9(1): 9185, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235707

RESUMO

Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of Saccharomyces cerevisiae to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 µM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase (ctt1) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H2O2 potentiates miconazole 32-fold and fluconazole 4-fold. Since H2O2 preconditioning does not alter the resistance of ctt1Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast, sod2Δ cells deleted for mitochondrial superoxide dismutase are 4-8-fold more azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the ctt1Δ mutant has double the Sod2 activity of wild-type cells so ctt1 deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial cta1 or cytosolic sod1 does not alter fluconazole or miconazole potency.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Catalase/metabolismo , Farmacorresistência Fúngica , Saccharomyces cerevisiae/enzimologia , Superóxido Dismutase/metabolismo , Catalase/genética , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/genética
20.
J Phys Chem B ; 122(14): 3760-3770, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29533644

RESUMO

S-aromatic motifs are important noncovalent forces for protein stability and function but remain poorly understood. Hence, we performed quantum calculations at the MP2(full)/6-311++G(d,p) level on complexes between Cys (H2S, MeSH) and Met (Me2S) models with models of Phe (benzene, toluene), Trp (indole, 3-methylindole), Tyr (phenol, 4-methylphenol), and His (imidazole, 4-methylimidazole). The most stable gas-phase conformers exhibit binding energies of -2 to -6 kcal/mol, and the S atom lies perpendicular to the ring plane. This reveals preferential interaction with the ring π-system, except in the imidazoles where S binds edge-on to an N atom. Complexation tunes the gas-phase vertical ionization potentials of the ligands over as much as 1 eV, and strong σ- or π-type H-bonding supports charge transfer to the H-bond donor, rendering it more oxidizable. When the S atom acts as an H-bond acceptor (N/O-Har···S), calibration of the CHARMM36 force field (by optimizing pair-specific Lennard-Jones parameters) is required. Implementing the optimized parameters in molecular dynamics simulations in bulk water, we find stable S-aromatic complexes with binding free energies of -0.6 to -1.1 kcal/mol at ligand separations up to 8 Å. The aqueous S-aromatics exhibit flexible binding conformations, but edge-on conformers are less stable in water. Reflecting this, only 0.3 to 10% of the S-indole, S-phenol, and S-imidazole structures are stabilized by N/O-Har···S or S-H···Oar/Nar σ-type H-bonding. The wide range of energies and geometries found for S-aromatic interactions and their tunable redox properties expose the versatility and variability of the S-aromatic motif in proteins and allow us to predict a number of their reported properties.


Assuntos
Simulação de Dinâmica Molecular , Proteína S/química , Teoria Quântica , Oxirredução , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA