RESUMO
In cultured cerebellar granule neurons, low neuronal activity triggers the intrinsic program of apoptosis, which requires protein synthesis-dependent BAX translocation to mitochondria, a process that may underlie neuronal damage in neurodegeneration. However, the mechanisms that link neuronal activity with the induction of the mitochondrial program of apoptosis remain unclear. Neuronal pentraxin 1 (NP1) is a pro-apoptotic protein induced by low neuronal activity that is increased in damaged neurites in Alzheimer's disease-affected brains. Here we report that NP1 facilitates the accumulation of BAX in mitochondria and regulates mitochondrial dynamics during apoptosis in rat and mouse cerebellar granule neurons in culture. Reduction of neuronal activity increases NP1 protein levels in mitochondria and contributes to mitochondrial fragmentation in a Bax-dependent manner. In addition, NP1 is involved in mitochondrial transport in healthy neurons. These results show that NP1 is targeted to mitochondria acting upstream of BAX and uncover a novel function for NP1 in the regulation of mitochondrial dynamics and trafficking during apoptotic neurodegeneration.
Assuntos
Proteína C-Reativa/fisiologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Simulação de Dinâmica Molecular , Ratos , Ratos Sprague-DawleyRESUMO
Peripheral nerve injury causes spontaneous and long-lasting pain, hyperalgesia, and allodynia. Excitatory amino acid receptor-dependent increases in descending facilitatory drive from the brainstem rostral ventromedial medulla (RVM) contribute to injury-evoked hypersensitivity. Although increased excitability likely reflects changes in synaptic efficacy, the cellular mechanisms underlying injury-induced synaptic plasticity are poorly understood. Neuronal pentraxin 1 (NP1), a protein with exclusive CNS expression, is implicated in synaptogenesis and AMPA receptor recruitment to immature synapses. Its role in the adult brain and in descending pain facilitation is unknown. Here, we use the spared nerve injury (SNI) model in rodents to examine this issue. We show that SNI increases RVM NP1 expression and constitutive deletion or silencing NP1 in the RVM, before or after SNI, attenuates allodynia and hyperalgesia in rats. Selective rescue of RVM NP1 expression restores behavioral hypersensitivity of knock-out mice, demonstrating a key role of RVM NP1 in the pathogenesis of neuropathic pain.
Assuntos
Proteína C-Reativa/antagonistas & inibidores , Proteína C-Reativa/fisiologia , Hiperalgesia/metabolismo , Hiperalgesia/prevenção & controle , Bulbo/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Neuralgia/metabolismo , Neuralgia/prevenção & controle , Animais , Proteína C-Reativa/genética , Inativação Gênica/fisiologia , Hiperalgesia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuralgia/genética , Neurônios/metabolismo , Manejo da Dor/métodos , Medição da Dor/métodos , Ratos , Ratos Sprague-DawleyRESUMO
Accumulation of amyloid-beta (Abeta) is thought to play a central role in the progressive loss of synapses, the neurite damage, and the neuronal death that are characteristic in brains affected by Alzheimer's disease. However, the mechanisms through which Abeta produces such neurotoxicity remain unclear. Because Abeta depresses synaptic activity, we investigated whether the neurotoxicity of Abeta depends on the expression of NP1, a protein involved in excitatory synapse remodeling that has recently been shown to mediate neuronal death induced by reduction in neuronal activity in mature neurons. We found that treatment of cortical neurons in culture with Abeta produces a marked increase in NP1 protein that precedes apoptotic neurotoxicity. Silencing NP1 gene expression by RNA interference (short hairpin RNA for RNA interference) prevents the loss of synapses, the reduction in neurite outgrowth, and the apoptosis evoked by Abeta. Transgene overexpression of NP1 reproduced these neurotoxic effects of Abeta. Moreover, we found that NP1 was increased in dystrophic neurites of brains from patients with sporadic late-onset Alzheimer's disease. Dual immunohistochemistry for NP1 and tau showed that NP1 colocalizes with tau deposits in dystrophic neurites. Furthermore, NP1 colocalized with SNAP-25 (synaptosomal-associated protein of 25 kDa) in the majority of dystrophic neurites surrounding amyloid deposits. NP1 was also increased in cell processes surrounding amyloid plaques in the cerebral cortex and hippocampus of APP/PS1 (mutant amyloid precursor protein/presenilin 1) transgenic mice. These findings show that NP1 is a key factor for the synapse loss, the neurite damage, and the apoptotic neuronal death evoked by Abeta and indicate that Abeta contributes to the pathology of Alzheimer's disease by regulating NP1 expression.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Encéfalo/metabolismo , Encéfalo/patologia , Proteína C-Reativa/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuritos/metabolismo , Neuritos/patologia , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Animais , Proteína C-Reativa/biossíntese , Proteína C-Reativa/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley , Sinapses/patologia , Regulação para Cima/fisiologiaRESUMO
Expression of neuronal pentraxin 1 (NP1) is part of the apoptotic cell death program activated in mature cerebellar granule neurons when potassium concentrations drop below depolarizing levels. NP1 is a glycoprotein homologous to the pentraxins of the acute phase immune response, and it is involved in both synaptogenesis and synaptic remodeling. However, how it participates in the process of apoptotic neuronal death remains unclear. We have studied whether the signaling pathways known to control neuronal cell death and survival influence NP1 expression. Both activation of the phosphatidylinositol 3-kinase/Akt (PI-3-K/AKT) pathway by insulin-like growth factor I and pharmacological blockage of the stress activated c-Jun NH(2)-terminal kinase (JNK) offer transitory neuroprotection from the cell death evoked by nondepolarizing concentrations of potassium. However, neither of these neuroprotective treatments prevents the overexpression of NP1 upon potassium depletion, indicating that nondepolarizing conditions activate additional cell death signaling pathways. Inhibiting the phosphorylation of the p38 mitogen-activated protein kinase without modifying JNK, neither diminishes cell death nor inhibits NP1 overexpression in nondepolarizing conditions. In contrast, impairing the activity of glycogen synthase kinase 3 (GSK3) completely blocks NP1 overexpression induced by potassium depletion and provides transient protection against cell death. Moreover, simultaneous pharmacological blockage of both JNK and GSK3 activities provides long-term protection against the cell death evoked by potassium depletion. These results show that both the JNK and GSK3 signaling pathways are the main routes by which potassium deprivation activates apoptotic cell death, and that NP1 overexpression is regulated by GSK3 activity independently of the PI-3-K/AKT or JNK pathway.