Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 121(1): 140-151, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461371

RESUMO

Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel expressed in the peripheral and central nervous systems. TRPV1-dependent mechanisms take part in a wide range of physiological and pathophysiological pathways including the regulation of homeostatic functions. TRPV1 expression in the hypothalamus has been described as well as evidence that TRPV1-dependent excitatory inputs to hypothalamic preautonomic neurons are diminished in diabetic conditions. Here we aimed to determine the functional expression of TRPV1 in two hypothalamic nuclei known to be involved in the central control of metabolism and to test the hypothesis that TRPV1-expressing neurons receive TRPV1-expressing inputs. A mouse model (TRPV1Cre/tdTom) was generated to identify TRPV1-expressing cells and determine the cellular properties of TRPV1-expressing neurons in adult mice. Our study demonstrated the functional expression of TRPV1 in the dorsomedial hypothalamic nucleus and paraventricular nucleus in adult mice. Our findings revealed that a subset of TRPV1Cre/tdTom neurons receive TRPV1-expressing excitatory inputs, indicating direct interaction between TRPV1-expressing neurons. In addition, astrocytes likely play a role in the modulation of TRPV1-expressing neurons. In summary, this study identified specific hypothalamic regions where TRPV1 is expressed and functional in adult mice and the existence of direct connections between TRPV1Cre/tdTom neurons. NEW & NOTEWORTHY Transient receptor potential vanilloid type 1 (TRPV1) is expressed in the hypothalamus, and TRPV1-dependent regulation of preautonomic neurons is decreased in hyperglycemic conditions. Our study demonstrated functional expression of TRPV1 in two hypothalamic nuclei involved in the control of energy homeostasis. Our results also revealed that a subset of TRPV1-expressing neurons receive TRPV1-expressing excitatory inputs. These findings suggest direct interaction between TRPV1-expressing neurons.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Dependovirus , Feminino , Hipotálamo/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Neurônios/citologia , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/genética , Técnicas de Cultura de Tecidos , Proteína Vermelha Fluorescente
2.
Physiol Rep ; 2(9)2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25263209

RESUMO

The central nervous system plays a critical role in the regulation of feeding behavior and whole-body metabolism via controlling the autonomic output to the visceral organs. Activity of the parasympathetic neurons in the dorsal motor nucleus of the vagus (DMV) determines the vagal tone and thereby modulates the function of the subdiaphragmatic organs. Leptin is highly involved in the regulation of food intake and alters neuronal excitability of brainstem neurons. Transient receptor potential vanilloid type 1 (TRPV1) has also been shown to increase neurotransmission in the brainstem and we tested the hypothesis that TRPV1 regulates presynaptic neurotransmitter release to leptin receptor-expressing (LepRb(EGFP)) DMV neurons. Whole-cell patch-clamp recordings were performed to determine the effect of TRPV1 activation on excitatory and inhibitory postsynaptic currents (EPSC, IPSC) of LepRb(EGFP) neurons in the DMV. Capsaicin, a TRPV1 agonist increased the frequency of miniature EPSCs in 50% of LepRb(EGFP) neurons without altering the frequency of miniature IPSCs in the DMV. Stomach-projecting LepRb(EGFP) neurons were identified in the DMV using the transsynaptic retrograde viral tracer PRV-614. Activation of TRPV1 increased the frequency of mEPSC in ~50% of stomach-related LepRb(EGFP) DMV neurons. These data demonstrate that TRPV1 increases excitatory neurotransmission to a subpopulation of LepRb(EGFP) DMV neurons via presynaptic mechanisms and suggest a potential interaction between TRPV1 and leptin signaling in the DMV.

3.
Behav Brain Res ; 264: 74-81, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24512770

RESUMO

Serotonergic neurons in the dorsal raphe nucleus (DR) are organized in anatomically distinct subregions that form connections with specific brain structures to modulate diverse behaviors, including anxiety-like behavior. It is unclear if the functional heterogeneity of these neurons is coupled to their developmental heterogeneity, and if abnormal development of specific DR serotonergic subregions can permanently impact anxiety circuits and behavior. The goal of this study was to examine if deficiencies in different components of fibroblast growth factor (Fgf) signaling could preferentially impact the development of specific populations of DR serotonergic neurons to alter anxiety-like behavior in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8, Fgfr1, or both (Fgfr1/Fgf8) were tested in an anxiety-related behavioral battery. Both Fgf8- and Fgfr1/Fgf8-deficient mice display increased anxiety-like behavior as measured in the elevated plus-maze and the open-field tests. Immunohistochemical staining of a serotonergic marker, tryptophan hydroxylase (Tph), revealed reductions in specific populations of serotonergic neurons in the ventral, interfascicular, and ventrolateral/ventrolateral periaqueductal gray subregions of the DR in all Fgf-deficient mice, suggesting a neuroanatomical basis for increased anxiety-like behavior. Overall, this study suggests Fgf signaling selectively modulates the development of different serotonergic neuron subpopulations. Further, it suggests anxiety-like behavior may stem from developmental disruption of these neurons, and individuals with inactivating mutations in Fgf signaling genes may be predisposed to anxiety disorders.


Assuntos
Adaptação Psicológica/fisiologia , Ansiedade/genética , Encéfalo/metabolismo , Fator 8 de Crescimento de Fibroblasto/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Serotonina/metabolismo , Análise de Variância , Animais , Ansiedade/fisiopatologia , Encéfalo/citologia , Comportamento Exploratório/fisiologia , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Força Muscular/genética , Mutação/genética , Neurônios/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Triptofano Hidroxilase/metabolismo
4.
PLoS One ; 9(7): e101420, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24992493

RESUMO

Functionally heterogeneous populations of serotonergic neurons, located within the dorsal raphe nucleus (DR), play a role in stress-related behaviors and neuropsychiatric illnesses such as anxiety and depression. Abnormal development of these neurons may permanently alter their structure and connections, making the organism more susceptible to anxiety-related disorders. A factor that critically regulates the development of serotonergic neurons is fibroblast growth factor 8 (Fgf8). In this study, we used acute restraint stress followed by behavioral testing to examine whether Fgf8 signaling during development is important for establishing functional stress- and anxiety-related DR neurocircuits in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8 were exposed to acute restraint stress and then tested for anxiety-like behavior on the elevated plus-maze. Further, we measured c-Fos immunostaining as a marker of serotonergic neuronal activation and tissue 5-hydroxyindoleacetic acid concentrations as a marker of serotonin functional output. Results showed that Fgf8 hypomorphs exhibited 1) an exaggerated response of DR anxiety-promoting circuits and 2) a blunted response of a DR panic-inhibiting circuit to stress, effects that together were associated with increased baseline anxiety-like behavior. Overall, our results provide a neural substrate upon which Fgf8 deficiency could affect stress response and support the hypothesis that developmental disruptions of serotonergic neurons affect their postnatal functional integrity.


Assuntos
Fator 8 de Crescimento de Fibroblasto/genética , Neurônios Serotoninérgicos/metabolismo , Estresse Fisiológico , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Líquida de Alta Pressão , Técnicas Eletroquímicas , Fator 8 de Crescimento de Fibroblasto/metabolismo , Heterozigoto , Ácido Hidroxi-Indolacético/análise , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Serotoninérgicos/patologia , Serotonina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA