Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 22(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28973990

RESUMO

A medium-throughput screen using Mycobacterium tuberculosis H37Rv was employed to screen an in-house library of structurally diverse compounds for antimycobacterial activity. In this initial screen, eleven 7-substituted coumarin derivatives with confirmed monoamine oxidase-B and cholinesterase inhibitory activities, demonstrated growth inhibition of more than 50% at 50 µM. This prompted further exploration of all the 7-substituted coumarins in our library. Four compounds showed promising MIC99 values of 8.31-29.70 µM and 44.15-57.17 µM on M. tuberculosis H37Rv in independent assays using GAST-Fe and 7H9+OADC media, respectively. These compounds were found to bind to albumin, which may explain the variations in MIC between the two assays. Preliminary data showed that they were able to maintain their activity in fluoroquinolone resistant mycobacteria. Structure-activity relationships indicated that structural modification on position 4 and/or 7 of the coumarin scaffold could direct the selectivity towards either the inhibition of neuronal enzymes or the antimycobacterial effect. Moderate cytotoxicities were observed for these compounds and slight selectivity towards mycobacteria was indicated. Further neuroprotective assays showed significant neuroprotection for selected compounds irrespective of their neuronal enzyme inhibitory properties. These coumarin molecules are thus interesting lead compounds that may provide insight into the design of new antimicrobacterial and neuroprotective agents.


Assuntos
Antibacterianos/química , Inibidores da Colinesterase/química , Cumarínicos/química , Inibidores da Monoaminoxidase/química , Mycobacterium tuberculosis/efeitos dos fármacos , Fármacos Neuroprotetores/química , Animais , Antibacterianos/farmacologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Cumarínicos/farmacologia , Cricetulus , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
2.
Eur J Med Chem ; 163: 83-94, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503945

RESUMO

The multifactorial pathophysiology of neurodegenerative disorders remains one of the main challenges in the design of a single molecule that may ultimately prevent the progression of these disorders in affected patients. In this article, we report on twelve novel polycyclic amine cage derivatives, synthesized with or without a propargylamine function, designed to possess inherent multifunctional neuroprotective activity. The MTT cytotoxicity assay results showed the SH-SY5Y human neuroblastoma cells to be viable with the twelve compounds, particularly at concentrations less than 10 µM. The compounds also showed significant neuroprotective activity, ranging from 31% to 61% at 1 µM, when assayed on SH-SY5Y human neuroblastoma cells in which neurodegeneration was induced by MPP+. Calcium regulation assays conducted on the same cell line showed the compounds to be significant VGCC blockers with activity ranging from 26.6% to 51.3% at 10 µM; as well as significant NMDAr antagonists with compound 5 showing the best activity of 88.3% at 10 µM. When assayed on human MAO isoenzymes, most of the compounds showed significant inhibitory activity, with compound 5 showing the best activity (MAO-B: IC50 = 1.70 µM). Generally, the compounds were about 3-52 times more selective to the MAO-B isoenzyme than the MAO-A isoenzyme. Based on the time-dependency studies conducted, the compounds can be defined as reversible MAO inhibitors. Several structure activity relationships were derived from the various assays conducted, and the compounds' possible putative binding modes within the MAO-B enzyme cavity were assessed in silico.


Assuntos
Fármacos Neuroprotetores/síntese química , Pargilina/análogos & derivados , Propilaminas/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Monoaminoxidase/efeitos dos fármacos , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Fármacos Neuroprotetores/farmacologia , Pargilina/síntese química , Pargilina/farmacologia , Propilaminas/síntese química , Ligação Proteica , Relação Estrutura-Atividade
3.
Medchemcomm ; 9(2): 357-370, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108930

RESUMO

A series of indole derivatives was designed and synthesised to improve on activity and circumvent pharmacokinetic limitations experienced with the structurally related compound, ladostigil. The compounds consisted of a propargylamine moiety (a known MAO inhibitor and neuroprotector) at the N1 position and a ChE inhibiting diethyl-carbamate/urea moiety at the 5 or 6 position of the indole ring. In order to prevent or slow down the in vivo hydrolysis and deactivation associated with the carbamate function of ladostigil, a urea moeity was incorporated into selected compounds to obtain more metabolically stable structures. The majority of the synthesised compounds showed improved MAO-A inhibitory activity compared to ladostigil. The compounds possessing the propargylamine moiety showed good MAO-B inhibitory activity with 6 and 8 portraying IC50 values between 14-20 fold better than ladostigil. The ChE assay results indicated that the compounds have non-selective inhibitory activities on eeAChE and eqBuChE regardless of the type or position of substitution (IC50: 2-5 µM). MAO-A and MAO-B docking results showed that the propargylamine moiety was positioned in close proximity to the FAD cofactor suggesting that the good inhibitory activity may be attributed to the propargylamine moiety and irreversible inhibition as confirmed in the reversibility studies. Docking results also indicated that the compounds have interactions with important amino acids in the AChE and BuChE catalytic sites. Compound 6 was the most potent multifunctional agent showing better inhibitory activity than ladostigil in vitro on all enzymes tested (hMAO-A IC50 = 4.31 µM, hMAO-B IC50 = 2.62 µM, eeAChE IC50 = 3.70 µM, eqBuChE IC50 = 2.82 µM). Chemical stability tests confirmed the diethyl-urea containing compound 6 to be more stable than its diethyl-carbamate containing counterpart compound 8. Compound 6 also exerted significant neuroprotection (52.62% at 1 µM) against MPP+ insult to SH-SY5Y neural cells and has good in silico predicted ADMET properties. The favourable neuronal enzyme inhibitory activity, likely improved pharmacokinetic properties in vivo and the potent neuroprotective ability of compound 6 make it a promising compound for further development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA