Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39234988

RESUMO

Maternal nutrition is pivotal for proper fetal development, with one-carbon metabolites (OCM) playing a key role in fetal epigenetic programming through DNA and histone methylation. The study aimed to investigate the effects of nutrient restriction and OCM supplementation on fetal liver metabolomics in pregnant beef-heifers, focusing on metabolites and pathways associated with amino acid, vitamin and cofactor, carbohydrate, and energy metabolism at day 63 of gestation. Thirty-one crossbred Angus heifers were artificially inseminated and allocated to 4 nutritional treatments in a 2 × 2 factorial arrangement of treatments, with the 2 factors being dietary intake/rate of gain (control-diet [CON]; 0.60 kg/d ADG, vs. restricted-diet [RES]; -0.23 kg/d ADG) and OCM supplementation (supplemented [+OCM] vs. not supplemented [-OCM]). The resulting treatment groups-CON - OCM, CON + OCM, RES - OCM, and RES + OCM were maintained for 63 day post-breeding. Following this period, fetal liver tissues were collected and subjected to metabolomic analysis using UPLC-tandem mass-spectrometry. We identified 288 metabolites, with the majority (n = 54) being significantly influenced by the main effect of gain (P ≤ 0.05). Moreover, RES showed decreased abundances of most metabolites in pathways such as lysine metabolism; leucine, isoleucine, and valine metabolism; and tryptophan metabolism, compared to CON. Supplementation with OCM vs. no OCM supplementation, resulted in greater abundance of metabolites (P ≤ 0.05) affecting pathways associated with methionine, cysteine, S-adenosylmethionine and taurine metabolism; guanidino and acetamido metabolism; and nicotinate and nicotinamide metabolism. Notably, OCM supplementation with a moderate rate of gain increased the concentrations of ophthalmate, N-acetylglucosamine, and ascorbic-acid 3-sulfate, which are important for proper fetal development (P ≤ 0.05). Nutrient restriction reduced the majority of liver metabolites, while OCM supplementation increased a smaller number of metabolites. Thus, OCM supplementation may be protective of metabolite concentrations in key developmental pathways, which could potentially enhance fetal development under nutrient-restricted conditions.


Maternal nutrition is crucial for pregnancy outcomes, influencing offspring health and productivity. Poor nutrition during pregnancy can lead to fetal growth restrictions, impacting liver development. Such changes can increase the risk of metabolic syndromes and predispose them to impaired immune function. In cattle, optimal nutrition during early pregnancy is essential for reproductive efficiency and herd health. This period is critical for developmental programming through epigenetic changes triggered by environmental or genetic factors. These modifications are heritable which are influenced by maternal diet and play a critical role in determining health outcomes post-birth, relying significantly on the availability of one-carbon metabolites (OCM) like methionine, choline, folate, and vitamin B12. Supplementing these nutrients during early gestation may counteract the negative effects of poor nutrition. This study explores the impact of OCM supplementation and dietary restrictions on the fetal liver metabolism in beef heifers during early gestation. Our findings showed that dietary restrictions decrease fetal liver metabolites, whereas OCM supplementation increases certain metabolites, indicating a compensatory effect to support fetal development under nutrient-restricted conditions. Highlighting the importance of maternal nutrition, our findings provide valuable insights for developing nutritional strategies to enhance livestock efficiency and inform dietary guidelines during pregnancy for better health outcomes.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Suplementos Nutricionais , Fígado , Animais , Bovinos/fisiologia , Feminino , Fígado/metabolismo , Gravidez , Ração Animal/análise , Dieta/veterinária , Feto/metabolismo , Metabolômica , Metaboloma , Fenômenos Fisiológicos da Nutrição Materna
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39028746

RESUMO

One-carbon metabolites (OCM) are metabolites and cofactors which include folate, vitamin B12, methionine, and choline that support methylation reactions. The objectives of this study were to investigate the effects of moderate changes in maternal body weight gain in combination with OCM supplementation during the first 63 d of gestation in beef cattle on (1) B12 and folate concentrations in maternal serum (2) folate cycle intermediates in maternal and fetal liver, allantoic fluid (ALF), and amniotic fluid (AMF) and (3) metabolites involved in one-carbon metabolism and related metabolic pathways in maternal and fetal liver. Heifers were either intake restricted (RES) and fed to lose 0.23 kg/d, or fed to gain 0.60 kg/d (CON). Supplemented (+ OCM) heifers were given B12 and folate injections weekly and fed rumen-protected methionine and choline daily, while non-supplemented (-OCM) heifers were given weekly saline injections. These two treatments were combined in a 2 × 2 factorial arrangement resulting in 4 treatments: CON-OCM, CON + OCM, RES-OCM, and RES + OCM. Samples of maternal serum, maternal and fetal liver, ALF, and AMF were collected at slaughter on day 63 of gestation. Restricted maternal nutrition most notably increased (./ ≤ 0.05) the concentration of vitamin B12 in maternal serum, 5,10-methylenetetrahydrofolate and 5,10-methenyltetrahydrofolate in maternal liver, and cystathionine in the fetal liver; conversely, maternal restriction decreased (P = 0.05) 5,10-methylenetetrahydrofolate concentration in fetal liver. Supplementing OCM increased (P ≤ 0.05) the concentrations of maternal serum B12, folate, and folate intermediates, ALF and AMF 5-methyltetrahydrofolate concentration, and altered (P ≤ 0.02) other maternal liver intermediates including S-adenosylmethionine, dimethylglycine, cystathionine Glutathione reduced, glutathione oxidized, taurine, serine, sarcosine, and pyridoxine. These data demonstrate that OCM supplementation was effective at increasing maternal OCM status. Furthermore, these data are similar to previously published literature where restricted maternal nutrition also affected maternal OCM status. Altering OCM status in both the dam and fetus could impact fetal developmental outcomes and production efficiencies. Lastly, these data demonstrate that fetal metabolite abundance is highly regulated, although the changes required to maintain homeostasis may program altered metabolism postnatally.


Maternal stresses that occur during pregnancy, such as restricted nutrition, can impact the developmental outcomes of the offspring in a process known as developmental programming. This programming can occur through epigenetics, which involves changes in fetal gene expression and can occur through the addition of methyl groups to DNA. These changes regulate gene transcription in the offspring and can alter offspring health, efficiency, and life-long outcomes. One-carbon metabolites (OCM), which are nutrients like the amino acid methionine and the vitamins B12, folate, and choline, act as intermediates or cofactors for the donation of methyl groups to DNA. This study investigated the effects of differing maternal rates of gain along with OCM supplementation during early gestation on OCM and related metabolite concentrations in the dam and fetus. We found that supplementing OCM to beef heifers increased maternal OCM and related metabolite concentrations and fetal fluid OCM concentrations. We also found that low maternal gain increased maternal serum and liver OCM concentrations. We can conclude from these findings that both maternal rate of gain and OCM supplementation can impact maternal OCM concentrations at day 63 of gestation and further research is needed to see if those maternal impacts will affect the developing fetus or calf later in its life.


Assuntos
Suplementos Nutricionais , Ácido Fólico , Fígado , Metionina , Vitamina B 12 , Animais , Feminino , Metionina/administração & dosagem , Metionina/metabolismo , Bovinos , Gravidez , Ácido Fólico/administração & dosagem , Ácido Fólico/metabolismo , Ácido Fólico/sangue , Vitamina B 12/administração & dosagem , Vitamina B 12/sangue , Vitamina B 12/metabolismo , Fígado/metabolismo , Feto/metabolismo , Dieta/veterinária , Colina/administração & dosagem , Colina/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Líquido Amniótico/metabolismo , Líquido Amniótico/química
3.
Vet Sci ; 11(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38668414

RESUMO

To investigate the effects of nutrient restriction and one-carbon metabolite (OCM) supplementation (folate, vitamin B12, methionine, and choline) on fetal small intestine weight, vascularity, and cell proliferation, 29 (n = 7 ± 1 per treatment) crossbred Angus beef heifers (436 ± 42 kg) were estrous synchronized and conceived by artificial insemination with female sexed semen from a single sire. Then, they were allotted randomly to one of four treatments in a 2 × 2 factorial arrangement with the main factors of nutritional plane [control (CON) vs. restricted feed intake (RES)] and OCM supplementation [without OCM (-OCM) or with OCM (+OCM)]. Heifers receiving the CON level of intake were fed to target an average daily gain of 0.45 kg/day, which would allow them to reach 80% of mature BW by calving. Heifers receiving the RES level of intake were fed to lose 0.23 kg/heifer daily, which mimics observed production responses in heifers that experience a diet and environment change during early gestation. Targeted heifer gain and OCM treatments were administered from d 0 to 63 of gestation, and then all heifers were fed a common diet targeting 0.45 kg/d gain until d 161 of gestation, when heifers were slaughtered, and fetal jejunum was collected. Gain had no effect (p = 0.17) on the fetal small intestinal weight. However, OCM treatments (p = 0.02) displayed less weight compared to the -OCM groups. Capillary area density was increased in fetal jejunal villi of RES - OCM (p = 0.02). Vascular endothelial growth factor receptor 2 (VEGFR2) positivity ratio tended to be greater (p = 0.08) in villi and was less in the crypts (p = 0.02) of the RES + OCM group. Cell proliferation decreased (p = 0.02) in villi and crypts of fetal jejunal tissue from heifers fed the RES + OCM treatment compared with all groups and CON - OCM, respectively. Spatial cell density increased in RES - OCM compared with CON + OCM (p = 0.05). Combined, these data show OCM supplementation can increase expression of VEGFR2 in jejunal villi, which will promote maintenance of the microvascular beds, while at the same time decreasing small intestine weight and crypt cell proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA