Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Exp Mar Biol Ecol ; 499: 9-16, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29910509

RESUMO

Projected increases in ocean pCO2 levels are anticipated to affect calcifying organisms more rapidly and to a greater extent than other marine organisms. The effects of ocean acidification (OA) have been documented in numerous species of corals in laboratory studies, largely tested using flow-through exposure systems. We developed a recirculating ocean acidification exposure system that allows precise pCO2 control using a combination of off-gassing measures including aeration, water retention devices, venturi injectors, and CO2 scrubbing. We evaluated the recirculating system performance in off-gassing effectiveness and maintenance of target pCO2 levels over an 84-day experiment. The system was used to identify changes in calcification and tissue growth in response to elevated pCO2 (1000 µatm) in three reef-building corals of the Caribbean: Pseudodiploria clivosa, Montastraea cavernosa, and Orbicella faveolata. All three species displayed an overall increase in net calcification over the 84-day exposure period regardless of pCO2 level (control +0.28- 1.12 g, elevated pCO2 +0.18- 1.16 g), and the system was effective at both off-gassing acidified water to ambient pCO2 levels, and maintaining target elevated pCO2 levels over the 3-month experiment.

2.
J Exp Biol ; 217(Pt 18): 3301-10, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25013114

RESUMO

Antarctic fish of the suborder Notothenioidei have evolved several unique adaptations to deal with subzero temperatures. However, these adaptations may come with physiological trade-offs, such as an increased susceptibility to oxidative damage. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly increase the level of oxidative stress and cellular damage in these endemic fish. Previous single stressor studies of the notothenioids have shown they possess the capacity to acclimate to increased temperatures, but the cellular-level effects remain largely unknown. Additionally, there is little information on the ability of Antarctic fish to respond to ecologically relevant environmental changes where multiple variables change concomitantly. We have examined the potential synergistic effects that increased temperature and P(CO2) have on the level of protein damage in Trematomus bernacchii, Pagothenia borchgrevinki and Trematomus newnesi, and combined these measurements with changes in total enzymatic activity of catalase (CAT) and superoxide dismutase (SOD) in order to gauge tissue-specific changes in antioxidant capacity. Our findings indicate that total SOD and CAT activity levels displayed only small changes across treatments and tissues. Short-term acclimation to decreased seawater pH and increased temperature resulted in significant increases in oxidative damage. Surprisingly, despite no significant change in antioxidant capacity, cellular damage returned to near-basal levels, and significantly decreased in T. bernacchii, after long-term acclimation. Overall, these data suggest that notothenioid fish currently maintain the antioxidant capacity necessary to offset predicted future ocean conditions, but it remains unclear whether this capacity comes with physiological trade-offs.


Assuntos
Aclimatação/fisiologia , Estresse Oxidativo/fisiologia , Perciformes/fisiologia , Temperatura , Animais , Mudança Climática , Superóxido Dismutase
3.
Comp Biochem Physiol B Biochem Mol Biol ; 274: 111002, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909831

RESUMO

Projected increases in temperature and decreases in salinity associated with global climate change will likely have detrimental impacts on eastern oyster, Crassostrea virginica, as these variables can influence physiological processes in these keystone species. We set out to determine how the interactive effects of temperature (20 °C or 27 °C) and/or salinity (27‰ or 17‰) impacted the energetic reserves, aerobic and anaerobic metabolism, and changes to oxidative stress or total antioxidant potential as a consequence of an altered environment over a 21-day exposure. Gill and adductor muscle were used to quantify changes in total glycogen and lipid content, Electron Transport System and Citrate Synthase activities, Malate Dehydrogenase activity, Protein Carbonyl formation, lipid peroxidation, and total antioxidant potential. A second exposure was performed to determine if these environmental factors influenced the ingestion of microfibers, which are now one of the leading forms of marine debris. Elevated temperature and the combination of elevated temperature and decreased salinity led to an overall decline in oyster mass, which was exacerbated by the presence of microfibers. Changes in metabolism and oxidative stress were largely influenced by time, but exposure to elevated temperature, decreased salinity, the combination of these stressors or exposure to microfibers had small impacts on oyster physiology and survival. Overall these studies demonstrate that oyster are fairly resilient to changes in salinity in short-term exposures, and elevations in temperature or temperature combined with salinity result in changes to the oyster energetic response, which can be further impacted by the presence of microfibers.

4.
Artigo em Inglês | MEDLINE | ID: mdl-22884997

RESUMO

Although the physiological response of teleost fishes to increased temperature has been well documented, there is only a small body of literature that examines the effects of ocean acidification on fish under ecologically relevant scenarios. Furthermore, little data exists which examines the possible synergistic effects of increased sea surface temperatures and pCO(2) levels, although it is well established that both will co-committedly change in the coming centuries. In this study we examined the effects of increased temperature, increased pCO(2), and a combination of these treatments on the resting metabolic rate (RMR) of four species of notothenioid fish, Trematomus bernacchii, T. hansoni, T. newnesi, and Pagothenia borchgrevinki, acclimated to treatment conditions for 7, 14 or 28days. While most species appear capable of rapidly acclimating to increased pCO(2), temperature continues to impact RMRs for up to 28days. One species in particular, T. newnesi, displayed no acclimatory response to any of the treatments regardless of acclimation time and may have a reduced capacity to respond to environmental change. Furthermore, we present evidence that temperature and pCO(2) act synergistically to further elevate the RMR and slow acclimation when compared to temperature or pCO(2) increases alone.


Assuntos
Dióxido de Carbono/metabolismo , Perciformes/metabolismo , Temperatura , Aclimatação , Animais , Regiões Antárticas , Concentração de Íons de Hidrogênio , Oceanos e Mares , Oxigênio/metabolismo , Perciformes/fisiologia , Estações do Ano , Especificidade da Espécie , Fatores de Tempo
5.
PLoS One ; 17(2): e0263463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143532

RESUMO

Neuroblastomas are one of the most common types of solid tumors in infants and children and are responsible for approximately 15% of childhood cancer deaths. Neuroblastomas rarely have mutations in p53, with less than 2% of NB containing mutations in p53, compared to up to 60% for other tumor classes. Previous studies on the therapeutic combination of a DNA damaging agent and checkpoint kinase 1 (Chk1) inhibitor have shown that DNA damage-induced cell cycle arrest can be specifically abrogated in p53-defective tumors. However, some p53-wildtype tumors have also been shown to be sensitive to this therapeutic combination, suggesting that these cells have other defects in the p53 response that can be exploited for therapeutic purposes. In the current study, we investigated the response to the combination of a DNA damaging agent (SN38) and a Chk1 inhibitor (UCN-01) of four p53-wildtype neuroblastoma cell lines: SK-N-SH, SH-SY5Y, SK-N-AS, and Lan-5. When the cells were treated with concentrations of SN38 ranging from 0-30 ng/ml, all four cell lines accumulated p53 which was phosphorylated on serines 15 and 20. However, only the SK-N-SH were found to activate p21waf1 and repress cyclin B. In order to assess sensitivity to UCN-01-mediated abrogation of cell cycle arrest, cell were treated with 10 ng/ml SN38 for 24 h, followed by 25 nM UCN-01 for 6 and 24 h. The SK-N-SH showed no sensitivity to UCN-01 treatment whereas the SH-SY5Y, SK-N-AS, and Lan-5 abrogated G2 arrest within 24 h. Our recent studies revealed that cells that are sensitive to checkpoint abrogation lack p53 dimers and tetramers, so we analyzed the oligomerization status of p53 in all four cell lines using glutaraldehyde crosslinking. The SK-N-SH cells possessed levels of p53 dimers and tetramers similar to what has previously been reported in p53-wildtype MCF10A cells. The SH-SY5Y, SK-N-AS, and Lan-5 however, had extremely low to undetectable levels of dimers and tetramers. Our study also showed no cytoplasmic accumulation of p53 in these cells contrary to some previous reports. The results of this study suggest that oligomerization status may serve as an indicator of sensitivity of p53-wildtype tumors to the therapeutic combination of DNA damaging agent and Chk1 inhibitor.


Assuntos
Antineoplásicos/farmacologia , Genes p53 , Irinotecano/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Estaurosporina/análogos & derivados , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Dano ao DNA , DNA de Neoplasias/efeitos dos fármacos , Humanos , Irinotecano/uso terapêutico , Estaurosporina/farmacologia , Estaurosporina/uso terapêutico , Inibidores da Topoisomerase I/uso terapêutico
6.
Conserv Physiol ; 5(1): cox019, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28852515

RESUMO

The adaptations used by notothenioid fish to combat extreme cold may have left these fish poorly poised to deal with a changing environment. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly affect the energetic demands and subsequent cellular processes necessary for survival. Despite recent lines of evidence demonstrating that notothenioid fish retain the ability to acclimate to elevated temperatures, the underlying mechanisms responsible for temperature acclimation in these fish remain largely unknown. Furthermore, little information exists on the capacity of Antarctic fish to respond to changes in multiple environmental variables. We have examined the effects of increased temperature and pCO2 on the rate of oxygen consumption in three notothenioid species, Trematomus bernacchii, Pagothenia borchgrevinki, and Trematomus newnesi. We combined these measurements with analysis of changes in aerobic and anaerobic capacity, lipid reserves, fish condition, and growth rates to gain insight into the metabolic cost associated with acclimation to this dual stress. Our findings indicated that temperature is the major driver of the metabolic responses observed in these fish and that increased pCO2 plays a small, contributing role to the energetic costs of the acclimation response. All three species displayed varying levels of energetic compensation in response to the combination of elevated temperature and pCO2. While P. borchgrevinki showed nearly complete compensation of whole animal oxygen consumption rates and aerobic capacity, T. newnesi and T. bernacchii displayed only partial compensation in these metrics, suggesting that at least some notothenioids may require physiological trade-offs to fully offset the energetic costs of long-term acclimation to climate change related stressors.

7.
Physiol Biochem Zool ; 86(6): 702-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24241067

RESUMO

Bioluminescence of the marine worm Chaetopterus variopedatus was first investigated several decades ago mainly using tissue extract. Light production of the worm, however, originates from a secreted mucus only. Here, we report the optical and physicochemical properties of the luminous mucus. We show that the produced light occurs as a long glow in the blue range (455 nm), which is an unusual color for a shallow benthic invertebrate. We also show that the light originates from a photoprotein whose light production is independent of molecular oxygen yet somewhat related to the physicochemical (rheological) characteristics of the mucus itself. Indeed, the mucus seems to polymerize and become more viscous on exposure to H2O2, which in turn seems to inhibit the light production. Ferrous iron was not associated with any strong stimulatory effect. This is in contrast to past studies on worm tissues showing that the light production is strongly stimulated by H2O2 and ferrous iron. Overall, our results highlight the fact that working on the luminous mucus only (vs. worm tissues) provides the ability to study its chemical properties possibly involved in the fine control of light production-as well as its rheological properties-and identify the possible interactions between these two properties.


Assuntos
Luminescência , Muco/química , Poliquetos/química , Animais , Cinética , Reologia , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA