Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Reprod ; 35(6): 1346-1362, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531067

RESUMO

STUDY QUESTION: Do human granulosa cells (GCs) ingest and destroy apoptotic oocytes? SUMMARY ANSWER: Somatic GCs ingest and destroy apoptotic oocytes and other apoptotic substrates through unconventional autophagy-assisted phagocytosis. WHAT IS KNOWN ALREADY: Most (99%) ovarian germ cells undergo apoptosis through follicular atresia. The mode of cleaning of atretic follicles from the ovary is unclear. Ovarian GCs share striking similarities with testicular Sertoli cells with respect to their origin and function. Somatic Sertoli cells are responsible for the elimination of apoptotic spermatogenic cells through unconventional autophagy-assisted phagocytosis. STUDY DESIGN, SIZE, DURATION: Human GCs were tested for the ability to ingest and destroy the apoptotic oocytes and other apoptotic substrates. A systemic study of the main phagocytosis steps has been performed at different time points after loading of apoptotic substrates into the GC. PARTICIPANTS/MATERIALS, SETTING, METHODS: Primary cultures of GC retrieved following controlled ovarian stimulation of five women for IVF/ICSI and a human granulosa KGN cell line were incubated with different apoptotic substrates: oocytes which underwent spontaneous apoptosis during the cultivation of immature germ cells for IVF/ICSI; apoptotic KGN cells; and apoptotic membranes from rat retinas. Cultured GC were analyzed for the presence of specific molecular markers characteristic of different steps of phagocytic and autophagy machineries by immunocytochemistry, confocal microscopy, transmission electron microscopy and western blotting, before and after loading with apoptotic substrates. MAIN RESULTS AND THE ROLE OF CHANCE: Incubation of human GC with apoptotic substrates resulted in their translocation in cell cytoplasm, concomitant with activation of the phagocytosis receptor c-mer proto-oncogene tyrosine kinase MERTK (P < 0.001), clumping of motor molecule myosin II, recruitment of autophagy proteins: autophagy-related protein 5 (ATG5), autophagy-related protein 6 (Beclin1) and the rise of a membrane form of microtubule-associated protein 1 light chain 3 (LC3-II) protein. Ingestion of apoptotic substrates was accompanied by increased expression of the lysosomal protease Cathepsin D (P < 0.001), and a rise of lysosomes in the GCs, as assessed by different techniques. The level of autophagy adaptor, sequestosome 1/p62 (p62) protein remained unchanged. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The number of patients described here is limited. Also the dependence of phagocytosis on reproductive hormone status of patients should be analyzed. WIDER IMPLICATIONS OF THE FINDINGS: Removal of apoptotic oocytes by surrounding GC seems likely to be a physiological mechanism involved in follicular atresia. Proper functioning of this mechanism may be a new strategy for the treatment of ovarian dysfunctions associated with an imbalance in content of germ cells in the ovaries, such as premature ovarian failure and polycystic ovary syndrome. STUDY FUNDING/COMPETING INTEREST(S): The study was funded by Rennes Metropole (AIS 2015) and Agence de BioMédecine. This work was supported by funding from Université de Rennes1, Institut National de la Santé et de la Recherche Médicale (INSERM) and CHU de Rennes. A.B. is funded in part by the program Actions Concertées Interpasteuriennes (ACIP) and a research grant from the European Society of Pediatric Endocrinology. This work is supported by the Agence Nationale de la Recherche Grants ANR-17-CE14-0038 and ANR-10-LABX-73. The authors declare no competing interests.


Assuntos
Atresia Folicular , Células da Granulosa , Animais , Autofagia , Feminino , Humanos , Masculino , Oócitos , Fagocitose , Proto-Oncogene Mas , Ratos
2.
Reprod Fertil Dev ; 31(6): 1078-1090, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30922439

RESUMO

In mammals, tight regulation of maternal endometrial function is critical for pregnancy success. In bovine species, endometrial expression of members of the scavenger receptor class A (SR-A) has been listed in high-throughput analyses, but very little is known about the involvement of these immune factors during implantation in mammals. To provide first insights into the contribution of SR-A to endometrial physiology, we analysed the expression and regulation of all members of SR-A (SR-A1, SR-A3-SR-A6) during the oestrous cycle and early pregnancy in cattle. Levels of SR-A1 were increased on Day 20 of pregnancy, whereas SR-A3 levels were increased on Day 13 of the oestrous cycle and of the pregnancy. Although SR-A4 levels were reduced on Day 20 of the oestrous cycle, they remained high in pregnant animals. SR-A5 levels increased by Day 13 of the oestrous cycle and decreased on Day 20, but remained high in pregnant animals. Interferon-τ does not affect SR-A gene expression, whereas progesterone regulates the expression of the SR-A3 and SR-A5 transcripts. Endometrial SR-A3 appeared significantly higher in cows carrying invitro-produced embryos than in AI cows. Our data suggest that members of the SR-A family are involved in endometrial remodelling and regulation of endometrial gland physiology, both processes being critical for implantation in mammals.


Assuntos
Endométrio/metabolismo , Ciclo Estral/metabolismo , Regulação da Expressão Gênica/fisiologia , Prenhez/metabolismo , Receptores Depuradores Classe A/metabolismo , Animais , Bovinos , Implantação do Embrião/fisiologia , Endométrio/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Gravidez , Prenhez/genética , Progesterona/farmacologia , Receptores Depuradores Classe A/genética
3.
Clin Genet ; 91(2): 143-156, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27893151

RESUMO

Human sex determination (SD) involves complex mutually antagonistic genetic interactions of testis- and ovary-determining pathways. For many years, both male and female SD were considered to be regulated by a linear cascade of pro-male and pro-female genes, respectively; however, it has become clear that male and female development is achieved through the repression of the alternative state. A gene determining the formation of a testis may function by repressing the female state and vice versa. Uniquely in development, SD is achieved by suppression of the alternate fate and maintained in adulthood by a mutually antagonistic double-repressive pathway. Here, we review genetic data generated through large-scale sequencing approaches that are changing our view of how this system works, including the recently described recurrent NR5A1 p.R92W mutation associated with testis development in 46,XX children. We also review some of the unique challenges in the field to establish that mutations, such as this are pathogenic. The impending surge of new genetic data on human SD from sequencing projects will create opportunities for the development of mechanistic models that will clarify how the system operates and importantly provide data to understand how selection and developmental processes interact to direct the evolution of SD across species.


Assuntos
Transtornos do Desenvolvimento Sexual/genética , Sequenciamento de Nucleotídeos em Larga Escala , Processos de Determinação Sexual , Fator Esteroidogênico 1/genética , Transtornos do Desenvolvimento Sexual/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Mutação , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
4.
Reprod Fertil Dev ; 28(4): 459-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25116692

RESUMO

Signal transducer and activator of transcription (STAT) proteins are critical for the regulation of numerous biological processes. In cattle, microarray analyses identified STAT1 as a differentially expressed gene in the endometrium during the peri-implantation period. To gain new insights about STAT1 during the oestrous cycle and early pregnancy, we investigated STAT1 transcript and protein expression, as well as its biological activity in bovine tissue and cells of endometrial origin. Pregnancy increased STAT1 expression on Day 16, and protein and phosphorylation levels on Day 20. In cyclic and pregnant females, STAT1 was located in endometrial cells but not in the luminal epithelium at Day 20 of pregnancy. The expression of STAT1 during the oestrous cycle was not affected by progesterone supplementation. In vivo and in vitro, interferon-tau (IFNT) stimulated STAT1 mRNA expression, protein tyrosine phosphorylation and nuclear translocation. Using chromatin immunoprecipitation in IFNT-stimulated endometrial cells, we demonstrated an increase of STAT1 binding on interferon regulatory factor 1 (IRF1), cytokine-inducible SH2-containing protein (CISH), suppressor of cytokine signaling 1 and 3 (SOCS1, SOCS3) gene promoters consistent with the induction of their transcripts. Our data provide novel molecular insights into the biological functions of STAT1 in the various cells composing the endometrium during maternal pregnancy recognition and implantation.


Assuntos
Endométrio/metabolismo , Interferon Tipo I/metabolismo , Proteínas da Gravidez/metabolismo , Fator de Transcrição STAT1/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Bovinos , Células Cultivadas , Implantação do Embrião , Ciclo Estral/genética , Ciclo Estral/metabolismo , Feminino , Regulação da Expressão Gênica , Idade Gestacional , Inseminação Artificial/veterinária , Fosforilação , Gravidez , Cultura Primária de Células , Regiões Promotoras Genéticas , Fator de Transcrição STAT1/genética , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Tempo
5.
Reproduction ; 148(6): 545-57, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25187621

RESUMO

In mammals, suppressor of cytokine signalling (CISH, SOCS1 to SOCS7) factors control signalling pathways involved in the regulation of numerous physiological processes including pregnancy. In order to gain new insights into the biological functions of SOCS in the endometrium, a comprehensive analysis of SOCS gene expression was carried out in bovine caruncular (CAR) and intercaruncular (ICAR) tissues collected i) during the oestrous cycle, ii) at the time of maternal recognition of pregnancy and at implantation in inseminated females, iii) following uterine interferon-tau (IFNT) infusion at day 14 post-oestrus, iv) following a period of controlled intravaginal progesterone release and v) following transfer of embryos by somatic-cell nuclear transfer (SCNT). The regulatory effects of IFNT on in vitro cultured epithelial and stromal cells were also examined. Altogether, our data showed that CISH, SOCS4, SOCS5 and SOCS7 mRNA levels were poorly affected during luteolysis and pregnancy. In contrast, SOCS1, SOCS2, SOCS3 and SOCS6 mRNA levels were strongly up-regulated at implantation (day 20 of pregnancy). Experimental in vitro and in vivo models demonstrated that only CISH, SOCS1, SOCS2 and SOCS3 were IFNT-induced genes. Immunohistochemistry showed an intense SOCS3 and SOCS6 staining in the nucleus of luminal and glandular epithelium and of stromal cells of pregnant endometrium. Finally, SOCS3 expression was significantly increased in SCNT pregnancies in keeping with the altered immune function previously reported in this model of compromised implantation. Collectively, our data suggest that spatio-temporal changes in endometrial SOCS gene expression reflect the acquisition of receptivity, maternal recognition of pregnancy and implantation.


Assuntos
Bovinos/fisiologia , Implantação do Embrião/fisiologia , Embrião de Mamíferos/fisiologia , Endométrio/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Animais , Bovinos/genética , Células Cultivadas , Implantação do Embrião/genética , Endométrio/citologia , Endométrio/efeitos dos fármacos , Ciclo Estral/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas In Vitro , Interferon Tipo I/farmacologia , Interferon Tipo I/fisiologia , Gravidez , Proteínas da Gravidez/farmacologia , Proteínas da Gravidez/fisiologia , Prenhez/fisiologia , Progesterona/farmacologia , Progesterona/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras da Sinalização de Citocina/genética
6.
Animal ; 10(11): 1856-1863, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27150201

RESUMO

We investigated the diagnostic reliability of pregnancy detection using changes in interferon stimulated gene (ISG) messenger RNA (mRNA) levels in circulating immune cells in ewes. Two different groups of ewes (an experimental group, experiment 1 and a farm group, experiment 2) were oestrus-synchronized and blood sampled on day 14 (D0=day of insemination in control animals, experiment 1) and day 15 (experiment 2). Real-time PCR were performed to evaluate the abundance of different ISG mRNAs. In the experimental group, peripheral blood mononuclear cells of 29 ewes born and bred in experimental facilities were isolated using a Percoll gradient method. Gene expression for Chemokine (C-X-C motif) ligand 10 (CXCL10), Myxovirus (influenza virus) resistance 1 (MX1) and Signal transducer and activator of transcription 1 (STAT1) mRNA were, respectively, 8.3-fold, 6.1-fold and 2.7-fold higher (P0.10) in CXCL10, STAT1, MX1, Myxovirus (influenza virus) resistance 2 (MX2) and ISG15 ubiquitin-like modifier (ISG15) mRNA expression were found between pregnant and non-pregnant ewes. The ROC curves and the hierarchical classification generated from the real-time PCR data failed to discriminate between pregnant and non-pregnant animals. In this group of animals, our results show a strong variability in ISG expression patterns: 17% of animals identified as non-pregnant by the five tests were in fact pregnant, only 52% of pregnant animals had at least two positive results (two genes above threshold), whereas up to five positive results (five genes above threshold) were needed to avoid misclassification. In conclusion, this study illustrates the high variability in ISG expression levels in immune circulating cells during early pregnancy and, therefore, highlights the limits of using ISG expression levels in blood samples, collected on PAXgene® tubes on farms, for early pregnancy detection in sheep.


Assuntos
Interferons/genética , Proteínas da Gravidez/genética , Testes de Gravidez/veterinária , Prenhez/genética , Ovinos/genética , Animais , Quimiocina CXCL10/genética , Sincronização do Estro , Feminino , Perfilação da Expressão Gênica , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Proteínas de Resistência a Myxovirus/genética , Gravidez , Testes de Gravidez/métodos , RNA Mensageiro/sangue , RNA Mensageiro/genética , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Fator de Transcrição STAT1/genética , Carneiro Doméstico/genética , Ubiquitinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA