RESUMO
The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.
Assuntos
Células Epiteliais/imunologia , Temperatura Alta , Imunidade Inata/imunologia , Interferons/imunologia , Mucosa Respiratória/imunologia , SARS-CoV-2/imunologia , Replicação Viral/imunologia , Adolescente , Animais , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Interferons/genética , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , RNA-Seq/métodos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Técnicas de Cultura de Tecidos , Células Vero , Replicação Viral/genética , Replicação Viral/fisiologiaRESUMO
Persistent infection with oncogenic human papillomavirus (HPV) is a prerequisite for cervical disease development, yet data regarding the host immune response to infection at the genotype level are quite limited. We created pseudoviruses bearing the major (L1) and minor (L2) capsid proteins and L1 virus-like particles representing the reference sequence and a consensus of 34 European sequences of HPV51. Despite the formation of similarly sized particles, motifs in the reference L1 and L2 genes had a profound impact on the immunogenicity, antigenicity and infectivity of these antigens. The antibody status of women exhibiting low-grade disease was similar between HPV16 and the consensus HPV51, but both demonstrated discrepancies between binding and neutralizing antibody responses. These data support the use of pseudoviruses as the preferred target antigen in studies of natural HPV infection and the need to consider variation in both the L1 and L2 proteins for the appropriate presentation of antibody epitopes.
Assuntos
Motivos de Aminoácidos , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Papillomaviridae/imunologia , Papillomaviridae/fisiologia , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/genética , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Camundongos Endogâmicos BALB C , Fatores de Virulência/genéticaRESUMO
Herpesviruses are ubiquitous pathogens that cause a wide range of disease. Upon nuclear entry, their genomes associate with histones and chromatin modifying enzymes that regulate the progression of viral transcription and outcome of infection. While the composition and modification of viral chromatin has been extensively studied on bulk populations of infected cells by chromatin immunoprecipitation, this key regulatory process remains poorly defined at single-genome resolution. Here we use high-resolution quantitative imaging to investigate the spatial proximity of canonical and variant histones at individual Herpes Simplex Virus 1 (HSV-1) genomes within the first 90 minutes of infection. We identify significant population heterogeneity in the stable enrichment and spatial proximity of canonical histones (H2A, H2B, H3.1) at viral DNA (vDNA) relative to established promyelocytic leukaemia nuclear body (PML-NB) host factors that are actively recruited to viral genomes upon nuclear entry. We show the replication-independent histone H3.3/H4 chaperone Daxx to cooperate with PML to mediate the enrichment and spatial localization of variant histone H3.3 at vDNA that limits the rate of HSV-1 genome decompaction to restrict the progress of immediate-early (IE) transcription. This host response is counteracted by the viral ubiquitin ligase ICP0, which degrades PML to disperse Daxx and variant histone H3.3 from vDNA to stimulate the progression of viral genome expansion, IE transcription, and onset of HSV-1 replication. Our data support a model of intermediate and sequential histone assembly initiated by Daxx that limits the rate of HSV-1 genome decompaction independently of the stable enrichment of histones H2A and H2B at vDNA required to facilitate canonical nucleosome assembly. We identify HSV-1 genome decompaction upon nuclear infection to play a key role in the initiation and functional outcome of HSV-1 lytic infection, findings pertinent to the transcriptional regulation of many nuclear replicating herpesvirus pathogens.
RESUMO
BACKGROUND: Hyperthermia is a well-accepted cancer therapy. Microwaves provide a very precise, targeted means of hyperthermia and are currently used to treat plantar warts caused by cutaneous-infective human papillomaviruses (HPVs). Other HPV genotypes infecting the anogenital mucosa cause genital warts or preneoplastic lesions or cervical cancer. Effective, non-ablative therapies for these morbid HPV-associated lesions are lacking. METHODS: The molecular consequences of microwave treatment were investigated in in vitro cultured three-dimensional HPV-positive cervical tumour tissues, and tissues formed from HPV-infected normal immortalised keratinocytes. Microwave energy delivery to tissues was quantified. Quantitative reverse transcriptase PCR was used to quantify mRNA expression. Immunohistochemistry and fluorescence immunostaining was used to assess protein expression. FINDINGS: Microwave energy deposition induced sustained, localised cell death at the treatment site. There was a downregulation in levels of HPV oncoproteins E6 and E7 alongside a reduction in cellular growth/proliferation and induction of apoptosis/autophagy. HSP70 expression confirmed hyperthermia, concomitant with induction of translational stress. INTERPRETATION: The data suggest that microwave treatment inhibits tumour cell proliferation and allows the natural apoptosis of HPV-infected cells to resume. Precision microwave delivery presents a potential new treatment for treating HPV-positive anogenital precancerous lesions and cancers. FUNDING: Funding was through an Innovate UK Biomedical Catalyst grant (ID# 92138-556187), a Chief Scientist Office grant (TCS/19/11) and core support from Medical Research Council (MC_ UU_12014) core funding for the MRC-University of Glasgow Centre for Virus Research.
Assuntos
Hipertermia Induzida , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Micro-Ondas , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/terapia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/genética , Morte Celular , Proteínas E7 de Papillomavirus/genéticaRESUMO
OBJECTIVES: The aim of the study was to find evidence of SARS-CoV-2 infection in UK cats. DESIGN: Tissue samples were tested for SARS-CoV-2 antigen using immunofluorescence and for viral RNA by in situ hybridisation. A set of 387 oropharyngeal swabs that had been submitted for routine respiratory pathogen testing was tested for SARS-CoV-2 RNA using reverse transcriptase quantitative PCR. RESULTS: Lung tissue collected post-mortem from cat 1 tested positive for both SARS-CoV-2 nucleocapsid antigen and RNA. SARS-CoV-2 RNA was detected in an oropharyngeal swab collected from cat 2 that presented with rhinitis and conjunctivitis. High throughput sequencing of the viral genome revealed five single nucleotide polymorphisms (SNPs) compared to the nearest UK human SARS-CoV-2 sequence, and this human virus contained eight SNPs compared to the original Wuhan-Hu-1 reference sequence. An analysis of the viral genome of cat 2 together with nine other feline-derived SARS-CoV-2 sequences from around the world revealed no shared cat-specific mutations. CONCLUSIONS: These findings indicate that human-to-cat transmission of SARS-CoV-2 occurred during the COVID-19 pandemic in the UK, with the infected cats developing mild or severe respiratory disease. Given the ability of the new coronavirus to infect different species, it will be important to monitor for human-to-cat, cat-to-cat and cat-to-human transmission.
Assuntos
COVID-19/veterinária , Doenças do Gato/virologia , Pulmão/virologia , SARS-CoV-2/isolamento & purificação , Zoonoses , Animais , COVID-19/epidemiologia , COVID-19/transmissão , Gatos , Feminino , Humanos , RNA Viral , SARS-CoV-2/genética , Reino Unido/epidemiologiaRESUMO
The primary envelopment/de-envelopment of Herpes viruses during nuclear exit is poorly understood. In Herpes simplex virus type-1 (HSV-1), proteins pUL31 and pUL34 are critical, while pUS3 and some others contribute; however, efficient membrane fusion may require additional host proteins. We postulated that vesicle fusion proteins present in the nuclear envelope might facilitate primary envelopment and/or de-envelopment fusion with the outer nuclear membrane. Indeed, a subpopulation of vesicle-associated membrane protein-associated protein B (VAPB), a known vesicle trafficking protein, was present in the nuclear membrane co-locating with pUL34. VAPB knockdown significantly reduced both cell-associated and supernatant virus titers. Moreover, VAPB depletion reduced cytoplasmic accumulation of virus particles and increased levels of nuclear encapsidated viral DNA. These results suggest that VAPB is an important player in the exit of primary enveloped HSV-1 virions from the nucleus. Importantly, VAPB knockdown did not alter pUL34, calnexin or GM-130 localization during infection, arguing against an indirect effect of VAPB on cellular vesicles and trafficking. Immunogold-labelling electron microscopy confirmed VAPB presence in nuclear membranes and moreover associated with primary enveloped HSV-1 particles. These data suggest that VAPB could be a cellular component of a complex that facilitates UL31/UL34/US3-mediated HSV-1 nuclear egress.