Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 608(7924): 795-802, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978189

RESUMO

Although p53 inactivation promotes genomic instability1 and presents a route to malignancy for more than half of all human cancers2,3, the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases-Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications-each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53-the 'guardian of the genome'-is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours.


Assuntos
Carcinogênese , Progressão da Doença , Genes p53 , Genoma , Perda de Heterozigosidade , Neoplasias Pancreáticas , Proteína Supressora de Tumor p53 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Evolução Molecular , Deleção de Genes , Genes p53/genética , Genoma/genética , Camundongos , Modelos Genéticos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/genética
2.
Mod Pathol ; 33(9): 1822-1831, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32350415

RESUMO

Entosis is a type of regulated cell death that promotes cancer cell competition. Though several studies have revealed the molecular mechanisms that govern entosis, the clinical and genetic correlates of entosis in human tumors is less well understood. Here we reviewed entotic cell-in-cell (CIC) patterns in a large single institution sequencing cohort (MSK IMPACT clinical sequencing cohort) of more than 1600 human pancreatic ductal adenocarcinoma (PDAC) samples to identify the genetic and clinical correlates of this cellular feature. After case selection, 516 conventional PDACs and 21 ASCs entered this study and ~45,000 HPFs (median 80 HPFs per sample) were reviewed; 549 entotic-CICs were detected through our cohort. We observed that entotic-CIC occurred more frequently in liver metastasis compared with primary in PDAC. Moreover, poorly differentiated adenocarcinoma or adenosquamous carcinoma had more entotic-CIC than well or moderately differentiated adenocarcinoma. With respect to genetic features TP53 mutations, KRAS amplification, and MYC amplification were significantly associated with entosis in PDAC tissues. From a clinical standpoint entotic CICs were independently associated with a poor prognosis by multivariate Cox regression analysis when considering all cases or primary PDACs specifically. These results provide a contextual basis for understanding entosis in PDAC, a highly aggressive cancer for which molecular insights are needed to improve survival.


Assuntos
Carcinoma Ductal Pancreático/genética , Entose/fisiologia , Mutação , Neoplasias Pancreáticas/genética , Idoso , Carcinoma Ductal Pancreático/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia
3.
J Clin Oncol ; 39(24): 2698-2709, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34133209

RESUMO

PURPOSE: Tumor mutational profiling is increasingly performed in patients with advanced cancer. We determined the extent to which germline mutation profiling guides therapy selection in patients with advanced cancer. METHODS: Patients with cancer undergoing tumor genomic profiling were prospectively consented for germline cancer predisposition gene analysis (2015-2019). In patients harboring germline likely pathogenic or pathogenic (LP/P) alterations, therapeutic actionability was classified using a precision oncology knowledge base. Patients with metastatic or recurrent cancer receiving germline genotype-directed therapy were determined. RESULTS: Among 11,947 patients across > 50 malignancies, 17% (n = 2,037) harbored a germline LP/P variant. By oncology knowledge base classification, 9% (n = 1042) had an LP/P variant in a gene with therapeutic implications (4% level 1; 4% level 3B; < 1% level 4). BRCA1/2 variants accounted for 42% of therapeutically actionable findings, followed by CHEK2 (13%), ATM (12%), mismatch repair genes (11%), and PALB2 (5%). When limited to the 9,079 patients with metastatic or recurrent cancer, 8% (n = 710) harbored level 1 or 3B genetic findings and 3.2% (n = 289) received germline genotype-directed therapy. Germline genotype-directed therapy was received by 61% and 18% of metastatic cancer patients with level 1 and level 3B findings, respectively, and by 54% of BRCA1/2, 75% of mismatch repair, 43% of PALB2, 35% of RAD51C/D, 24% of BRIP1, and 19% of ATM carriers. Of BRCA1/2 patients receiving a poly(ADP-ribose) polymerase inhibitor, 45% (84 of 188) had tumors other than breast or ovarian cancer, wherein the drug, at time of delivery, was delivered in an investigational setting. CONCLUSION: In a pan-cancer analysis, 8% of patients with advanced cancer harbored a germline variant with therapeutic actionability with 40% of these patients receiving germline genotype-directed treatment. Germline sequence analysis is additive to tumor sequence analysis for therapy selection and should be considered for all patients with advanced cancer.


Assuntos
Mutação em Linhagem Germinativa/genética , Neoplasias/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA