Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nucleic Acids Res ; 49(17): 9906-9925, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500463

RESUMO

Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Autoantígeno Ku/metabolismo , Fatores de Processamento de RNA/metabolismo , Alquilantes/efeitos adversos , Alquilantes/farmacologia , Camptotecina/efeitos adversos , Camptotecina/farmacologia , Linhagem Celular Tumoral , Endodesoxirribonucleases/metabolismo , Glioblastoma/tratamento farmacológico , Recombinação Homóloga/genética , Humanos , Proteína Homóloga a MRE11/metabolismo , Interferência de RNA , Fatores de Processamento de RNA/genética , RNA Interferente Pequeno/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Temozolomida/efeitos adversos , Temozolomida/farmacologia
2.
Cancer Res Commun ; 3(5): 780-792, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377893

RESUMO

The TGFß signaling mediator SMAD4 is frequently mutated or deleted in colorectal and pancreatic cancers. SMAD4 acts as a tumor suppressor and its loss is associated with poorer patient outcomes. The purpose of this study was to find synthetic lethal interactions with SMAD4 deficiency to find novel therapeutic strategies for the treatment of patients with SMAD4-deficient colorectal or pancreatic cancers. Using pooled lentiviral single-guide RNA libraries, we conducted genome-wide loss-of-function screens in Cas9-expressing colorectal and pancreatic cancer cells harboring altered or wild-type SMAD4. The small GTPase protein RAB10 was identified and validated as a susceptibility gene in SMAD4-altered colorectal and pancreatic cancer cells. Rescue assays showed that RAB10 reintroduction reversed the antiproliferative effects of RAB10 knockout in SMAD4-negative cell lines. Further investigation is necessary to shed light on the mechanism by which RAB10 inhibition decreases cell proliferation of SMAD4-negative cells. Significance: This study identified and validated RAB10 as new synthetic lethal gene with SMAD4. This was achieved by conducting a whole-genome CRISPR screens in different colorectal and pancreatic cell lines. A future RAB10 inhibitors could correspond to a new therapeutic solution for patients with cancer with SMAD4 deletion.


Assuntos
Neoplasias Colorretais , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Genes Letais , Neoplasias Pancreáticas/genética , Neoplasias Colorretais/genética , Proteína Smad4/genética , Neoplasias Pancreáticas
3.
Trends Biotechnol ; 37(1): 38-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30177380

RESUMO

High-throughput genetic screens interfering with gene expression are invaluable tools to identify gene function and phenotype-to-genotype interactions. Implementing such screens in the laboratory is challenging, and the choice between currently available technologies based on RNAi and CRISPR/Cas9 (CRISPR-associated protein 9) is not trivial. Identifying reliable candidate hits requires a streamlined experimental setup adjusted to the specific biological question. Here, we provide a critical assessment of the various RNAi/CRISPR approaches to pooled screens and discuss their advantages and pitfalls. We specify a set of best practices for key parameters enabling a reproducible screen and provide a detailed overview of analysis methods and repositories for identifying the best candidate gene hits.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Introdução de Genes/métodos , Técnicas de Silenciamento de Genes/métodos , Técnicas de Inativação de Genes/métodos , Estudos de Associação Genética , Testes Genéticos/métodos , Interferência de RNA , Biologia Computacional/métodos , Ensaios de Triagem em Larga Escala
4.
Mutat Res Rev Mutat Res ; 769: 19-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27543314

RESUMO

Despite surgical resection and genotoxic treatment with ionizing radiation and the DNA alkylating agent temozolomide, glioblastoma remains one of the most lethal cancers, due in great part to the action of DNA repair mechanisms that drive resistance and tumor relapse. Understanding the molecular details of these mechanisms and identifying potential pharmacological targets have emerged as vital tasks to improve treatment. In this review, we introduce the various cellular systems and animal models that are used in studies of DNA repair in glioblastoma. We summarize recent progress in our knowledge of the pathways and factors involved in the removal of DNA lesions induced by ionizing radiation and temozolomide. We introduce the therapeutic strategies relying on DNA repair inhibitors that are currently being tested in vitro or in clinical trials, and present the challenges raised by drug delivery across the blood brain barrier as well as new opportunities in this field. Finally, we review the genetic and epigenetic alterations that help shape the DNA repair makeup of glioblastoma cells, and discuss their potential therapeutic impact and implications for personalized therapy.


Assuntos
Neoplasias Encefálicas/genética , Reparo do DNA , Glioblastoma/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Modelos Animais de Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Terapia Genética , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Radioterapia , Transdução de Sinais
5.
Cancer Res ; 76(2): 390-402, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26577700

RESUMO

The introduction of MAPK pathway inhibitors paved the road for significant advancements in the treatment of BRAF-mutant (BRAF(MUT)) melanoma. However, even BRAF/MEK inhibitor combination therapy has failed to offer a curative treatment option, most likely because these pathways constitute a codependent signaling network. Concomitant PTEN loss of function (PTEN(LOF)) occurs in approximately 40% of BRAF(MUT) melanomas. In this study, we sought to identify the nodes of the PTEN/PI3K pathway that would be amenable to combined therapy with MAPK pathway inhibitors for the treatment of PTEN(LOF)/BRAF(MUT) melanoma. Large-scale compound sensitivity profiling revealed that PTEN(LOF) melanoma cell lines were sensitive to PI3Kß inhibitors, albeit only partially. An unbiased shRNA screen (7,500 genes and 20 shRNAs/genes) across 11 cell lines in the presence of a PI3Kß inhibitor identified an adaptive response involving the IGF1R-PI3Kα axis. Combined inhibition of the MAPK pathway, PI3Kß, and PI3Kα or insulin-like growth factor receptor 1 (IGF1R) synergistically sustained pathway blockade, induced apoptosis, and inhibited tumor growth in PTEN(LOF)/BRAF(MUT) melanoma models. Notably, combined treatment with the IGF1R inhibitor, but not the PI3Kα inhibitor, failed to elevate glucose or insulin signaling. Taken together, our findings provide a strong rationale for testing combinations of panPI3K, PI3Kß + IGF1R, and MAPK pathway inhibitors in PTEN(LOF)/BRAF(MUT) melanoma patients to achieve maximal response.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Receptor IGF Tipo 1/metabolismo , Apoptose , Morte Celular , Proliferação de Células , Humanos , Melanoma/patologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA