Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Eukaryot Microbiol ; 70(3): e12966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756708

RESUMO

Phytoplankton-bacteria interactions represent the evolution of complex cross-kingdom networks requiring niche specialization of diverse microbes. Unraveling this co-evolutionary process has proven challenging because microbial partnerships are complex, and their assembly can be dynamic as well as scale- and taxon-dependent. Here, we monitored long-term experimental evolution of phytoplankton-bacteria interactions by reintroducing the intact microbiome into an axenized dinoflagellate Alexandrium tamarense to better understand microbiome assembly dynamics and how microbiome composition could shift and stabilize over 15 months. We examined host functioning by growth rate, photosynthetic capability, cell size, and other physiological signatures and compared it to associated microbial communities determined by 16S rRNA gene sequences. Our results showed that microbiome reconstitution did not restore the intact microbiome, instead a distinct microbial community shift to Roseobacter clade was observed in the re-established cultures. In-depth comparisons of microbial interactions revealed no apparent coupling between host physiology and specific bacterial taxa, indicating that highly represented, abundant taxa might not be essential for host functioning. The emergence of highly divergent Roseobacter clade sequences suggests fine-scale microbial dynamics driven by microdiversity could be potentially linked to host functioning. Collectively, our results indicate that functionally comparable microbiomes can be assembled from markedly different, highly diverse bacterial taxa in changing environments.


Assuntos
Microbiota , Fitoplâncton , Filogenia , RNA Ribossômico 16S/genética , Bactérias/genética
2.
J Eukaryot Microbiol ; 69(1): e12874, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669235

RESUMO

Recent evidence suggests that programmed cell death (PCD) can play a role in stress-induced decline and termination of harmful algal blooms. However, components of the PCD cascade, i.e. reactive oxygen species (ROS) and caspase-like activity, have also been observed in the absence of exogenous stress, where their activities and functions remain unclear. Here, we characterized the variability of prevalence of cell death, ROS, and caspase-like activity at different growth phases and diel cycles in cultures of dinoflagellate Karenia brevis. Results show that ROS percentages increased with culture age and fluctuated in a phasing diel pattern, while caspase-like activity was observed throughout growth. In actively growing K. brevis cells, PCD components may be involved in key metabolic processes, while in stationary phase they may relate to stress acclimation. The circadian diel pattern of ROS may be explained by the balance between the metabolic generation of ROS and circadian rhythmicity of antioxidant enzymes. Overall, this work highlights not only the involvement of PCD components in the growth of marine phytoplankton, but the importance of understanding mechanisms controlling their accumulation, which would help to better interpret their presence in the field.


Assuntos
Dinoflagellida , Morte Celular , Proliferação Nociva de Algas , Fitoplâncton , Espécies Reativas de Oxigênio
3.
Limnol Oceanogr ; 62(4): 1742-1753, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30906072

RESUMO

While considerable effort has been devoted to understanding the factors regulating the development of phytoplankton blooms, the mechanisms leading to bloom decline and termination have received less attention. Grazing and sedimentation have been invoked as the main routes for the loss of phytoplankton biomass, and more recently, viral lysis, parasitism and programmed cell death (PCD) have been recognized as additional removal factors. Despite the importance of bloom declines to phytoplankton dynamics, the incidence and significance of various loss factors in regulating phytoplankton populations have not been widely characterized in natural blooms. To understand mechanisms controlling bloom decline, we studied two independent, inshore blooms of Alexandrium fundyense, paying special attention to cell mortality as a loss pathway. We observed increases in the number of dead cells with PCD features after the peak of both blooms, demonstrating a role for cell mortality in their terminations. In both blooms, sexual cyst formation appears to have been the dominant process leading to bloom termination, as both blooms were dominated by small-sized gamete cells near their peaks. Cell death and parasitism became more significant as sources of cell loss several days after the onset of bloom decline. Our findings show two distinct phases of bloom decline, characterized by sexual fusion as the initial dominant cell removal processes followed by elimination of remaining cells by cell death and parasitism.

4.
Mol Biol Evol ; 30(1): 70-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22628533

RESUMO

Dinoflagellates produce a variety of toxic secondary metabolites that have a significant impact on marine ecosystems and fisheries. Saxitoxin (STX), the cause of paralytic shellfish poisoning, is produced by three marine dinoflagellate genera and is also made by some freshwater cyanobacteria. Genes involved in STX synthesis have been identified in cyanobacteria but are yet to be reported in the massive genomes of dinoflagellates. We have assembled comprehensive transcriptome data sets for several STX-producing dinoflagellates and a related non-toxic species and have identified 265 putative homologs of 13 cyanobacterial STX synthesis genes, including all of the genes directly involved in toxin synthesis. Putative homologs of four proteins group closely in phylogenies with cyanobacteria and are likely the functional homologs of sxtA, sxtG, and sxtB in dinoflagellates. However, the phylogenies do not support the transfer of these genes directly between toxic cyanobacteria and dinoflagellates. SxtA is split into two proteins in the dinoflagellates corresponding to the N-terminal portion containing the methyltransferase and acyl carrier protein domains and a C-terminal portion with the aminotransferase domain. Homologs of sxtB and N-terminal sxtA are present in non-toxic strains, suggesting their functions may not be limited to saxitoxin production. Only homologs of the C-terminus of sxtA and sxtG were found exclusively in toxic strains. A more thorough survey of STX+ dinoflagellates will be needed to determine if these two genes may be specific to SXT production in dinoflagellates. The A. tamarense transcriptome does not contain homologs for the remaining STX genes. Nevertheless, we identified candidate genes with similar predicted biochemical activities that account for the missing functions. These results suggest that the STX synthesis pathway was likely assembled independently in the distantly related cyanobacteria and dinoflagellates, although using some evolutionarily related proteins. The biological role of STX is not well understood in either cyanobacteria or dinoflagellates. However, STX production in these two ecologically distinct groups of organisms suggests that this toxin confers a benefit to producers that we do not yet fully understand.


Assuntos
Cianobactérias/genética , Dinoflagellida/genética , Evolução Molecular , Saxitoxina/biossíntese , Saxitoxina/genética , Cianobactérias/classificação , Dinoflagellida/classificação , Genes Bacterianos , Filogenia , Análise de Sequência de RNA , Transcriptoma
5.
Harmful Algae ; 131: 102561, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212086

RESUMO

Ciguatera poisoning (CP) is the most common form of phycotoxin-borne seafood poisoning globally, affecting thousands of people on an annual basis. It most commonly occurs in residential fish of coral reefs, which consume toxin-laden algae, detritus, and reef animals. The class of toxins that cause CP, ciguatoxins (CTXs), originate in benthic, epiphytic dinoflagellates of the genera, Gambierdiscus and Fukuyoa, which are consumed by herbivores and detritivores that facilitate food web transfer. A number of factors have hindered adequate environmental monitoring and seafood surveillance for ciguatera including the low concentrations in which the toxins are found in seafood causing illness (sub-ppb), a lack of knowledge on the toxicity equivalence of other CTXs and contribution of other benthic algal toxins to the disease, and the limited availability of quantified toxin standards and reference materials. While progress has been made on the identification of the dinoflagellate taxa and toxins responsible for CP, more effort is needed to better understand the dynamics of toxin transfer into reef food webs in order to implement a practical monitoring program for CP. Here, we present a conceptual model that utilizes empirical field data (temperature, Gambierdiscus cell densities, macrophyte cover) in concert with other published studies (grazing rates and preference) to produce modeling outputs that suggest approaches that may be beneficial to developing monitoring programs: 1) targeting specific macrophytes for Gambierdiscus and toxin measurements to monitor toxin levels at the base of the food web (i.e., toxin loading); and 2) adjusting these targets across sites and over seasons. Coupling this approach with other methodologies being incorporated into monitoring programs (artificial substrates; FISH probes; toxin screening) may provide an "early warning" system to develop strategic responses to potential CP flare ups in the future.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Humanos , Animais , Ciguatoxinas/toxicidade , Região do Caribe , Monitoramento Ambiental/métodos
6.
J Eukaryot Microbiol ; 60(5): 526-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23865757

RESUMO

Organisms tend to be sensitive to drastic changes in environmental conditions. For unicellular microorganisms, variations in physico-chemical conditions are particularly challenging and may result in acclimation, entrance into quiescence, or death through necrotic or autocatalytic pathways. This study focuses on the thecate dinoflagellate Alexandrium tamarense. Cellular responses to oxidative, thermal, and nutrient stress were characterized using stress indicators, such as pigment content, efficiency of photosystem II or production of reactive oxygen species (ROS), as well as hallmarks of apoptosis including activity of caspase-like enzymes and expression of a metacaspase gene homolog. The formation of temporary cysts, a survival strategy of short-term quiescence, was also monitored. Cellular responses appeared to depend on multifactorial influences where type and intensity of stimulus as well as position in cell cycle may act in combination. Sequences of events observed implicate ROS production as a key determinant of stress-related pathways, playing potential roles in intracellular signaling, formation of temporary cysts, or cellular damage. Variations observed in caspase-like activities and metacaspase gene expression did not appear to be associated with programmed cell death pathways; our results suggest a wider range of functions for these proteases in phytoplankton cells, including roles in survival pathways and cell cycle progression.


Assuntos
Alveolados/fisiologia , Estresse Oxidativo , Estresse Fisiológico , Alveolados/efeitos dos fármacos , Alveolados/metabolismo , Alveolados/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Espécies Reativas de Oxigênio , Transdução de Sinais , Temperatura
7.
Chemosphere ; 330: 138659, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37044143

RESUMO

Ciguatera poisoning (CP) is a severe seafood-borne disease, caused by the consumption of reef fish contaminated with Caribbean ciguatoxins (C-CTXs) in the Caribbean and tropical Atlantic. However, C-CTXs have not been identified from their presumed algal source, so the relationship to the CTXs in fish causing illness remains unknown. This has hindered the development of detection methods, diagnostics, monitoring programs, and limited fundamental knowledge on the environmental factors that regulate C-CTX production. In this study, in vitro and chemical techniques were applied to unambiguously identify a novel C-CTX analogue, C-CTX5, from Gambierdiscus silvae and Gambierdiscus caribaeus strains from the Caribbean. Metabolism in vitro by fish liver microsomes converted algal C-CTX5 into C-CTX1/2, the dominant CTX in ciguatoxic fish from the Caribbean. Furthermore, C-CTX5 from G. silvae was confirmed to have voltage-gated sodium-channel-specific activity. This finding is crucial for risk assessment, understanding the fate of C-CTXs in food webs, and is a prerequisite for development of effective analytical methods and monitoring programs. The identification of an algal precursor produced by two Gambierdiscus species is a major breakthrough for ciguatera research that will foster major advances in this important seafood safety issue.


Assuntos
Ciguatera , Ciguatoxinas , Dinoflagellida , Animais , Ciguatoxinas/toxicidade , Região do Caribe , Peixes
8.
Sci Rep ; 12(1): 14081, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982058

RESUMO

Programmed cell death (PCD) can be induced in microalgae by many abiotic challenges via generation of reactive oxygen species (ROS). Marine phytoplankton live in a highly variable light environment, yet the potential for excess photosynthetically available radiation to trigger PCD has not been examined. On the other hand, photoprotective non-photochemical quenching (NPQ) is hypothesized to counteract intracellular ROS, potentially preventing cell death. The main objective of this study is to investigate high-light-induced death processes and their relationship with photosynthesis in bloom-forming dinoflagellate Karenia brevis. Here, we characterized the prevalence of ROS, caspase-like enzyme activity and cell death as well as photosynthetic status under acute irradiance of 500, 750 or 1000 µmol m-2 s-1. PCD only occurred at the largest light shift. Although depressed photosynthetic capacities and oxidative stress were apparent across the stress gradient, they did not necessarily lead to cell death. NPQ exhibited dose-dependent activation with increasing light stress, which enabled cells to resist or delay PCD. These results highlight the important role of the balance between ROS generation and NPQ activation on determining cell fates in Karenia under acute irradiance stress. This research also provides insights into potential survival strategies and mechanisms of cell loss under a changeable light environment.


Assuntos
Dinoflagellida , Microalgas , Morte Celular , Dinoflagellida/metabolismo , Luz , Microalgas/metabolismo , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo
9.
J Plankton Res ; 44(4): 559-572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898815

RESUMO

The majority of microalgal species reproduce asexually, yet population genetic studies rarely find identical multi-locus genotypes (MLG) in microalgal blooms. Instead, population genetic studies identify large genotypic diversity in most microalgal species. This paradox of frequent asexual reproduction but low number of identical genotypes hampers interpretations of microalgal genotypic diversity. We present a computer model for estimating, for the first time, the number of distinct MLGs by simulating microalgal population composition after defined exponential growth periods. The simulations highlighted the effects of initial genotypic diversity, sample size and intraspecific differences in growth rates on the probability of isolating identical genotypes. We estimated the genotypic richness for five natural microalgal species with available high-resolution population genetic data and monitoring-based growth rates, indicating 500 000 to 2 000 000 distinct genotypes for species with few observed clonal replicates (<5%). Furthermore, our simulations indicated high variability in genotypic richness over time and among microalgal species. Genotypic richness was also strongly impacted by intraspecific variability in growth rates. The probability of finding identical MLGs and sampling a representative fraction of genotypes decreased noticeably with smaller sample sizes, challenging the detection of differences in genotypic diversity with typical isolate numbers in the field.

10.
Appl Environ Microbiol ; 76(14): 4647-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20495054

RESUMO

Alexandrium catenella is widespread in western North America and produces a suite of potent neurotoxins that cause paralytic shellfish poisoning (PSP) in humans and have deleterious impacts on public health and economic resources. There are seasonal PSP-related closures of recreational and commercial shellfisheries in the Puget Sound, but the factors that influence cell distribution, abundance, and relationship to paralytic shellfish toxins (PSTs) in this system are poorly described. Here, a quantitative PCR assay was used to detect A. catenella cells in parallel with state shellfish toxicity testing during the 2006 bloom season at 41 sites from April through October. Over 500,000 A. catenella cells liter(-1) were detected at several stations, with two main pulses of cells driving cell distribution, one in June and the other in August. PSTs over the closure limit of 80 mug of PST 100 per g of shellfish tissue were detected at 26 of the 41 sites. Comparison of cell numbers and PST data shows that shellfish toxicity is preceded by an increase in A. catenella cells in 71% of cases. However, cells were also observed in the absence of PSTs in shellfish, highlighting the complex relationship between A. catenella and the resulting shellfish toxicity. These data provide important information on the dynamics of A. catenella cells in the Puget Sound and are a first step toward assessing the utility of plankton monitoring to augment shellfish toxicity testing in this system.


Assuntos
Alveolados/isolamento & purificação , Frutos do Mar/toxicidade , Animais , Contagem de Células , América do Norte , Reação em Cadeia da Polimerase/métodos
11.
Deep Sea Res 2 Top Stud Oceanogr ; 57(3-4): 175-189, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24882951

RESUMO

We report the zygotic encystment of geographically dispersed isolates in the dinoflagellate species complex Alexandrium tamarense, in particular, successful mating of toxic Group I and nontoxic Group III isolates. However, hypnozygotes produced in Group I/III co-cultures complete no more than three divisions after germinating. Previous reports have suggested a mate recognition mechanism whereby hypnozygotes produced in co-cultures could arise from either homotypic (inbred) or heterotypic (outbred) gamete pairs. To determine the extent to which each occurs, a nested PCR assay was developed to determine parentage of individual hypnozygotes. The vast majority of hypnozygotes from pairwise Group I/III co-cultures were outbred, so that inviability was a result of hybridization, not inbreeding. These findings support the assertion that complete speciation underlies the phylogenetic structure of the Alexandrium tamarense species complex. Additionally, the ribosomal DNA (rDNA) copy numbers of both hybrid and single ribotype hypnozygotes were reduced substantially from those of haploid motile cells. The destruction of rDNA loci may be crucial for the successful mating of genetically distant conjugants and appears integral to the process of encystment. The inviability of Group I/III hybrids is important for public health because the presence of hybrid cysts may indicate ongoing displacement of a nontoxic population by a toxic one (or vice versa). Hybrid inviability also suggests a bloom control strategy whereby persistent, toxic Group I blooms could be mitigated by introduction of nontoxic Group III cells. The potential for hybridization in nature was investigated by applying the nested PCR assay to hypnozygotes from Belfast Lough, Northern Ireland, a region where Group I and III populations co-occur. Two hybrid cysts were identified in 14 successful assays, demonstrating that Group I and III populations do interbreed in that region. However, an analysis of mating data collected over an 18-year period indicated a leaky pre-mating barrier between ribosomal species (including Groups I and III). Whether the observed selectivity inhibits hybridization in nature is dependent on its mechanism. If the point of selectivity is the induction of gametogenesis, dissimilar ribotypes could interbreed freely, promoting displacement in cases where hybridization is lethal. If instead, selectivity occurs during the adhesion of gamete pairs, it could enable stable coexistence of A. tamarense species. In either case, hybrid inviability may impose a significant obstacle to range expansion. The nested PCR assay developed here is a valuable tool for investigation of interspecies hybridization and its consequences for the global biogeography of these important organisms.

12.
Harmful Algae ; 95: 101802, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32439059

RESUMO

The association between phytoplankton blooms and oil spills is still controversial despite numerous studies. Surprisingly, to date, there have been no studies on the effect of bacterial communities (BCs) exposed to crude oil on phytoplankton growth, even though crude oil changes BCs, which can then affect phytoplankton growth and species composition. Co-culture with crude oil-exposed BCs significantly stimulated the growth of Prorocentrum texanum in the laboratory. To gain more direct evidence, oil-degrading bacteria from oil-contaminated sediment collected after the Texas City "Y" oil spill were isolated, and changes in dinoflagellate growth when co-cultured with single bacterial isolates was investigated. The oil-degrading bacterial isolates significantly stimulated the growth of dinoflagellates (axenic and xenic cultures) through releasing growth-promoting substances. This study provides new evidence for the potential role of oil-degrading bacteria in the formation of phytoplankton blooms after an oil spill.


Assuntos
Dinoflagellida , Poluição por Petróleo , Petróleo , Bactérias , Fitoplâncton
13.
Front Microbiol ; 10: 385, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915045

RESUMO

Phytoplankton strongly interact with their associated bacteria, both attached (PA), and free-living (FL), and bacterial community structures can be specific to phytoplankton species. Similarly, responses to environmental stressors can vary by taxon, as exemplified by observed shifts in phytoplankton community structure from diatoms to phytoflagellates after the Deepwater Horizon (DWH) oil spill. Here, we assess the extent to which associated bacteria influence the phytoplankton taxon-specific oil response by exposing xenic and axenic strains of three phytoplankton species to oil and/or dispersant. The dinoflagellates Amphidinium carterae and Peridinium sociale, and the diatom Skeletonema sp., all harbored significantly distinct bacterial communities that reflected their host oil response. Oil degrading bacteria were detected in both PA and FL communities of the oil resistant dinoflagellates, but their FL bacteria were more efficient in lipid hydrolysis, a proxy for oil degradation capability. Inversely, the growth rate and photosynthetic parameters of the diatom Skeletonema sp. was the most impacted by dispersed oil compared to the dinoflagellates, and oil-degrading bacteria were not significantly associated to its microbiome, even in the dispersed oil treatment. Moreover, the FL bacteria of Skeletonema did not show significant oil degradation. Yet, the lack of consistent significant differences in growth or photosynthetic parameters between the xenic and axenic cultures after oil exposure suggest that, physiologically, the associated bacteria do not modify the phytoplankton oil response. Instead, both oil resistance and phycosphere composition appear to be species-specific characteristics that are not causally linked. This study explores one aspect of what is undoubtedly a complex suite of interactions between phytoplankton and their associated bacteria; future analyses would benefit from studies of genes and metabolites that mediate algal-bacterial exchanges.

14.
Harmful Algae ; 86: 46-54, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31358276

RESUMO

Paralytic Shellfish Poisoning (PSP) caused by the dinoflagellate Alexandrium catenella is a well-known global syndrome that negatively impacts human health and fishery economies. Understanding the population dynamics and ecology of this species is thus important for identifying determinants of blooms and associated PSP toxicity. Given reports of extensive genetic heterogeneity in the toxicity and physiology of Alexandrium species, knowledge of genetic population structure in harmful algal species such as A. catenella can also facilitate the understanding of toxic bloom development and ecological adaptation. In this study we employed microsatellite markers to analyze multiple A. catenella strains isolated from several sub-regions in the Gulf of Maine (GoM) during summer blooms, to gain insights into the sources and dynamics of this economically important phytoplankton species. At least three genetically distinct clusters of A. catenella were identified in the GoM. Each cluster contained representatives from different sub-regions, highlighting the extent of connectivity and dispersal throughout the region. This shared diversity could result from cyst beds created by previous coastal blooms, thereby preserving the overall diversity of the regional A. catenella population. Rapid spatiotemporal genetic differentiation of A. catenella populations was observed in local blooms, likely driven by natural selection through environmental conditions such as silicate and nitrate/nitrite concentrations, emphasizing the role of short-term water mass intrusions and biotic processes in determining the diversity and dynamics of marine phytoplankton populations. Given the wide-spread intraspecific diversity of A. catenella in GoM and potentially elsewhere, harmful algal blooms will likely persist in many regions despite global warming and changing environmental conditions in the future. Selection of different genetic lineages through variable hydrological conditions might impact toxin production and profiles of future blooms, challenging HAB control and prediction of PSP risk in the future.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Estruturas Genéticas , Proliferação Nociva de Algas , Humanos , Maine
15.
Environ Health ; 7 Suppl 2: S2, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19025673

RESUMO

BACKGROUND: Harmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics. RESULTS: In the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin beta-N-methylamino-L-alanine. CONCLUSION: Along the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute toxicity, but almost nothing is known about the effects of chronic, subacute toxin exposure. The OHH initiatives have brought scientists together to work collectively on HAB issues, within and across regions. The successes that have been achieved highlight the value of collaboration and cooperation across disciplines, if we are to continue to advance our understanding of HABs and their relationship to human health.


Assuntos
Saúde Ambiental , Eucariotos/crescimento & desenvolvimento , Microbiologia da Água , Animais , Eucariotos/microbiologia , Eutrofização/fisiologia , Great Lakes Region , Humanos , Água do Mar
16.
ISME J ; 12(10): 2532-2543, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29950702

RESUMO

The Deepwater Horizon (DWH) blowout resulted in the deposition to the seafloor of up to 4.9% of 200 million gallons of oil released into the Gulf of Mexico. The petroleum hydrocarbon concentrations near the wellhead were high immediately after the spill, but returned to background levels a few years after the spill. Microbial communities in the seafloor are thought to be responsible for the degradation of hydrocarbons, however, our knowledge is primarily based upon gene diversity surveys and hydrocarbon concentration in field sediment samples. Here, we investigated the oil degradation potential and changes in bacterial community by amending seafloor sediment collected near the DWH site with crude oil and both oil and Corexit dispersant. Polycyclic aromatic hydrocarbons were rapidly degraded during the first 30 days of incubation, while alkanes were degraded more slowly. With the degradation of hydrocarbons, the relative abundances of Colwelliaceae, Alteromonadaceae, Methylococales, Alcanivorax, Bacteriovorax, and Phaeobacter increased remarkably. However, the abundances of oil-degrading bacteria changed with oil chemistry. Colwelliaceae decreased with increasing oil degradation, whereas Alcanivorax and Methylococcales increased considerably. We assembled seven genomes from the metagenome, including ones belonging to Colwellia, Alteromonadaceae, Rhodobacteraceae, the newly reported genus Woeseia, and candidate phylum NC10, all of which possess a repertoire of genes for hydrocarbon degradation. Moreover, genes related to hydrocarbon degradation were highly enriched in the oiled treatment, suggesting that the hydrocarbons were biodegraded, and that the indigenous microflora have a remarkable potential for the natural attenuation of spilled oil in the deep-sea surface sediment.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Poluição por Petróleo/análise , Petróleo/metabolismo , Proteobactérias/classificação , Poluentes Químicos da Água/metabolismo , Golfo do México , Louisiana , Proteobactérias/metabolismo , Poluentes Químicos da Água/análise
17.
J Appl Phycol ; 30(6): 3529-3540, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31551649

RESUMO

The genus Gambierdiscus is a recognized group of marine epiphytic-benthic dinoflagellates that produce the toxins that cause ciguatera fish poisoning (CFP). To date, thirteen species and six ribotypes of Gambierdiscus have been identified, and multiple species commonly co-occur within a single site or epiphyte community. Toxicity can vary by species, thus it is important to be able to differentiate among species for research and monitoring purposes. Gambierdiscus species have very similar morphological characteristics and are difficult or impossible to distinguish using light microscopy. DNA sequencing has been an important tool in the definition of Gambierdiscus species, but it can be time-consuming and relatively expensive. To provide an alternative approach, a PCR-RFLP protocol was developed for efficient, rapid, and cost-effective identification of Gambierdiscus strains isolated from the Gulf of Mexico and Caribbean Sea, where CFP cases and Gambierdiscus spp. have been reported. The assay targets the D1-D2 hypervariable regions of the large subunit ribosomal RNA gene and uses a single restriction enzyme, BsrI. This method produces distinct RFLP banding patterns for the six species of Gambierdiscus reported from the Gulf of Mexico and Caribbean Sea, and also distinguishes them from four Pacific endemic species. This method was successfully used to type 465 clonal isolates of Gambierdiscus from the U.S. Virgin Islands and Akumal Beach - Mexico This BsrI PCR-RFLP method expands the tools available to researchers and managers engaged in monitoring activities and ecological studies.

18.
Mar Ecol Prog Ser ; 602: 63-76, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31762524

RESUMO

Despite a global interest in the relationship between harmful algal blooms (HABs) and eutrophication, the impact of natural versus anthropogenic nutrient sources on species composition or toxicity of HABs remains unclear. Stable isotopes are used to identify and track nitrogen (N) sources to water bodies, and thus can be used to ascertain the N source(s) used by the phytoplankton in those systems. To focus this tool for a particular species, the fundamental patterns of N isotope fractionation by that organism must first be understood. While literature is available describing N isotope fractionation by diatoms and coccolithophores, data are lacking regarding dinoflagellates. Here we investigated the effects of N chemical form on isotope fractionation (Δ) and toxin content using isolates of the autotrophic dinoflagellate, Alexandrium catenella, in single-N and mixed-N experiments. Growth of A. catenella exclusively on nitrate (NO3 -), ammonium (NH4 +), or urea, resulted in Δ of 2.7±1.4‰, 29±9.3‰, or 0.3±0.1‰, respectively, with the lowest cellular toxicity reported during urea utilization. Cells initially utilized NH4 + and urea when exposed to mixed-N medium, and only utilized NO3 - after NH4 + decreased below 2-4 µM. This pattern of N preference was similar across all N treatments, suggesting that there is no effect of preconditioning on N chemical preference by A. catenella. In NO3 - and urea-rich environments, the δ15N of Alexandrium catenella would resemble the source(s) of N utilized, supporting this tool's utility as a tracer of N source(s) facilitating bloom formation, however, caution is advisable in NH4 + rich environments where the large Δ value could lead to misinterpretation of the signal.

19.
BMC Genomics ; 7: 88, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16638123

RESUMO

BACKGROUND: Dinoflagellates are one of the most important classes of marine and freshwater algae, notable both for their functional diversity and ecological significance. They occur naturally as free-living cells, as endosymbionts of marine invertebrates and are well known for their involvement in "red tides". Dinoflagellates are also notable for their unusual genome content and structure, which suggests that the organization and regulation of dinoflagellate genes may be very different from that of most eukaryotes. To investigate the content and regulation of the dinoflagellate genome, we performed a global analysis of the transcriptome of the toxic dinoflagellate Alexandrium fundyense under nitrate- and phosphate-limited conditions using Massively Parallel Signature Sequencing (MPSS). RESULTS: Data from the two MPSS libraries showed that the number of unique signatures found in A. fundyense cells is similar to that of humans and Arabidopsis thaliana, two eukaryotes that have been extensively analyzed using this method. The general distribution, abundance and expression patterns of the A. fundyense signatures were also quite similar to other eukaryotes, and at least 10% of the A. fundyense signatures were differentially expressed between the two conditions. RACE amplification and sequencing of a subset of signatures showed that multiple signatures arose from sequence variants of a single gene. Single signatures also mapped to different sequence variants of the same gene. CONCLUSION: The MPSS data presented here provide a quantitative view of the transcriptome and its regulation in these unusual single-celled eukaryotes. The observed signature abundance and distribution in Alexandrium is similar to that of other eukaryotes that have been analyzed using MPSS. Results of signature mapping via RACE indicate that many signatures result from sequence variants of individual genes. These data add to the growing body of evidence for widespread gene duplication in dinoflagellates, which would contribute to the transcriptional complexity of these organisms. The MPSS data also demonstrate that a significant number of dinoflagellate mRNAs are transcriptionally regulated, indicating that dinoflagellates commonly employ transcriptional gene regulation along with the post-transcriptional regulation that has been well documented in these organisms.


Assuntos
Dinoflagellida/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Transcrição Gênica , Animais , Arabidopsis/genética , Evolução Biológica , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genoma , Humanos , Especificidade da Espécie
20.
Mar Pollut Bull ; 109(1): 236-244, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287865

RESUMO

We modeled the transport of oil, source-fingerprinted 44 tarball samples from Galveston Island (GV) and Mustang Island (MT), and determined the hydrocarbon and bacterial community composition of these tarballs following the 2014 Texas City "Y" Oil Spill (TCY). Transport modeling indicated that the tarballs arrived in MT before the samples were collected. Source-fingerprinting confirmed that the tarballs collected from GV and MT, 6d and 11d after the TCY, respectively, originated from the spill. Tarballs from GV showed 21% depletion of alkanes, mainly C9-C17, and 55% depletion of PAHs mainly naphthalenes, and dominated by alkane-degrading Alcanivorax and Psychrobacter. Samples from MT were depleted of 24% alkanes and 63% PAHs, and contained mainly of PAH-degrading Pseudoalteromonas. To the best of our knowledge, this is the first study to relate oil transport, tarball source-fingerprinting, chemistry, and microbiology, which provides insights on the fate of oil in the northern Gulf of Mexico.


Assuntos
Poluição por Petróleo , Petróleo , Microbiologia da Água , Golfo do México , Hidrocarbonetos , Modelos Químicos , Hidrocarbonetos Policíclicos Aromáticos , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA