Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Inj Prev ; 22(1): 3-18, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26635210

RESUMO

BACKGROUND: The Global Burden of Diseases (GBD), Injuries, and Risk Factors study used the disability-adjusted life year (DALY) to quantify the burden of diseases, injuries, and risk factors. This paper provides an overview of injury estimates from the 2013 update of GBD, with detailed information on incidence, mortality, DALYs and rates of change from 1990 to 2013 for 26 causes of injury, globally, by region and by country. METHODS: Injury mortality was estimated using the extensive GBD mortality database, corrections for ill-defined cause of death and the cause of death ensemble modelling tool. Morbidity estimation was based on inpatient and outpatient data sets, 26 cause-of-injury and 47 nature-of-injury categories, and seven follow-up studies with patient-reported long-term outcome measures. RESULTS: In 2013, 973 million (uncertainty interval (UI) 942 to 993) people sustained injuries that warranted some type of healthcare and 4.8 million (UI 4.5 to 5.1) people died from injuries. Between 1990 and 2013 the global age-standardised injury DALY rate decreased by 31% (UI 26% to 35%). The rate of decline in DALY rates was significant for 22 cause-of-injury categories, including all the major injuries. CONCLUSIONS: Injuries continue to be an important cause of morbidity and mortality in the developed and developing world. The decline in rates for almost all injuries is so prominent that it warrants a general statement that the world is becoming a safer place to live in. However, the patterns vary widely by cause, age, sex, region and time and there are still large improvements that need to be made.


Assuntos
Efeitos Psicossociais da Doença , Saúde Global , Ferimentos e Lesões/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Causas de Morte/tendências , Criança , Pré-Escolar , Pessoas com Deficiência/estatística & dados numéricos , Feminino , Humanos , Incidência , Lactente , Masculino , Pessoa de Meia-Idade , Mortalidade/tendências , Anos de Vida Ajustados por Qualidade de Vida , Fatores de Risco , Ferimentos e Lesões/etiologia , Ferimentos e Lesões/mortalidade , Adulto Jovem
2.
Am J Physiol Regul Integr Comp Physiol ; 306(9): R647-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24500431

RESUMO

Reproducibly differential responses to different classes of antihypertensive agents are observed among hypertensive patients and may be due to interindividual differences in hypertension pathology. Computational models provide a tool for investigating the impact of underlying disease mechanisms on the response to antihypertensive therapies with different mechanisms of action. We present the development, calibration, validation, and application of an extension of the Guyton/Karaaslan model of blood pressure regulation. The model incorporates a detailed submodel of the renin-angiotensin-aldosterone system (RAAS), allowing therapies that target different parts of this pathway to be distinguished. Literature data on RAAS biomarker and blood pressure responses to different classes of therapies were used to refine the physiological actions of ANG II and aldosterone on renin secretion, renal vascular resistance, and sodium reabsorption. The calibrated model was able to accurately reproduce the RAAS biomarker and blood pressure responses to combinations of dual-RAAS agents, as well as RAAS therapies in combination with diuretics or calcium channel blockers. The final model was used to explore the impact of underlying mechanisms of hypertension on the blood pressure response to different classes of antihypertensive agents. Simulations indicate that the underlying etiology of hypertension can impact the magnitude of response to a given class of therapy, making a patient more sensitive to one class and less sensitive others. Given that hypertension is usually the result of multiple mechanisms, rather than a single factor, these findings yield insight into why combination therapy is often required to adequately control blood pressure.


Assuntos
Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Modelos Cardiovasculares , Sistema Renina-Angiotensina/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Simulação por Computador , Diuréticos/uso terapêutico , Quimioterapia Combinada , Humanos , Hipertensão/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , Reprodutibilidade dos Testes , Biologia de Sistemas , Resultado do Tratamento , Vasodilatadores/uso terapêutico
3.
Polymers (Basel) ; 16(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794542

RESUMO

The effect of amphiphilic block copolymer polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG concentration in the polyphenylsulfone (PPSU) casting solution and coagulation bath temperature (CBT) on the structure, separation, and antifouling performance of PPSU ultrafiltration membranes was studied for the first time. According to the phase diagram obtained, PPSU/PEG-PPG-PEG/N-methyl-2-pyrrolidone (NMP) systems are characterized by a narrow miscibility gap. It was found that 20 wt.% PPSU solutions in NMP with the addition of 5-15 wt.% of PEG-PPG-PEG block copolymer feature upper critical solution temperature, gel point, and lower critical solution temperature. Membrane composition and structure were studied by Fourier-transform infrared spectroscopy, scanning electron and atomic force microscopies, and water contact angle measurements. The addition of PEG-PPG-PPG to the PPSU casting solution was found to increase the hydrophilicity of the membrane surface (water contact angle decreased from 78° for the reference PPSU membrane down to 50° for 20 wt.%PPSU/15 wt.% PEG-PPG-PEG membrane). It was revealed that the pure water flux increased with the rise of CBT from 18-20 L·m-2·h-1 for the reference PPSU membrane up to 38-140 L·m-2·h-1 for 20 wt.% PPSU/10-15 wt.% PEG-PPG-PEG membranes. However, the opposite trend was observed for 20 wt.% PPSU/5-7 wt.% PEG-PPG-PEG membranes: pure water flux decreased with an increase in CBT. This is due to the differences in the mechanism of phase separation (non-solvent-induced phase separation (NIPS) or a combination of NIPS and temperature-induced phase separation (TIPS)). It was shown that 20 wt.% PPSU/10 wt.% PEG-PPG-PEG membranes were characterized by significantly higher antifouling performance (FRR-81-89%, DRr-26-32%, DRir-10-20%, DT-33-45%) during the ultrafiltration of bovine serum albumin solutions compared to the reference PPSU membrane prepared at different CBTs (FRR-29-38%, DRr-6-14%, DRir-74-89%, DT-88-94%).

4.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732675

RESUMO

Pervaporation is considered the most promising technology for dehydration of bioalcohols, attracting increasing attention as a renewable energy source. In this regard, the development of stable and effective membranes is required. In this study, highly efficient membranes for the enhanced pervaporation dehydration of ethanol were developed by modification of sodium alginate (SA) with a polyethylenimine (PEI) forming polyelectrolyte complex (PEC) and graphene oxide (GO). The effect of modifications with GO or/and PEI on the structure, physicochemical, and transport characteristics of dense membranes was studied. The formation of a PEC by ionic cross-linking and its interaction with GO led to changes in membrane structure, confirmed by spectroscopic and microscopic methods. The physicochemical properties of membranes were investigated by a thermogravimetric analysis, a differential scanning calorimetry, and measurements of contact angles. The theoretical consideration using computational methods showed favorable hydrogen bonding interactions between GO, PEI, and water, which caused improved membrane performance. To increase permeability, supported membranes without treatment and cross-linked were developed by the deposition of a thin dense layer from the optimal PEC/GO (2.5%) composite onto a developed porous substrate from polyacrylonitrile. The cross-linked supported membrane demonstrated more than two times increased permeation flux, higher selectivity (above 99.7 wt.% water in the permeate) and stability for separating diluted mixtures compared to the dense pristine SA membrane.

5.
Chemosphere ; 349: 140981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114025

RESUMO

One of the solutions for the growing problem of water purification is photocatalytic degradation of the pollutants. Semiconductor nanoparticles are widely under study as a promising photocatalyst for this purpose. However, there is still lack of understanding of the relation between properties of nanoparticles, in their turn related with synthesis conditions, and photocatalytic efficiency, as well as of the other factors influencing the process. For the first time, a possibility to regulate photocatalytic activity of SnO2 nanoparticles under UV light via regulation of structural parameters is shown. A method for obtaining spherical nanoparticles with different parameters was developed. Obtained nanoparticles were fully characterized. Special attention was paid to the study of oxygen vacancies. With the help of quantum computational methods, it was shown, that the concentration of vacancies is around 1 per 32 tin atoms. Obtained data on oxygen vacancies were further used for the evaluation of pollutant-nanoparticle surface interaction to get closer to the calculations of real systems. On the example of methylene blue, it was shown that the greater is the amount of oxygen vacancies and the lower the amount of defects, the higher photocatalytic activity. The obtained dependence is confirmed by the fact that the photoresponse increases with a decrease of amount of defects in the sample. Degradation kinetics of sulfonamides mixture was studied, and its dependence on active complex formation was shown based on the quantum chemical calculation data. Degradation of antibiotics in water from Neva River reached more than 95% in 35 min, which indicates that developed photocatalyst efficiency is not affected by pollutants contained in open water in the centre of the metropolis. It was shown, that the use of nanoparticles allows to speed up the process of bacteria destruction under UV light, which indicates the antibacterial activity of obtained nanoparticles.


Assuntos
Poluentes Ambientais , Nanopartículas , Raios Ultravioleta , Sulfonamidas , Nanopartículas/química , Antibacterianos/farmacologia , Oxigênio , Água/química , Catálise
6.
Polymers (Basel) ; 15(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36987122

RESUMO

Nowadays, nanofiltration is actively used for water softening and disinfection, pre-treatment, nitrate, and color removal, in particular, for heavy metal ions removal from wastewater. In this regard, new, effective materials are required. In the present work, novel sustainable porous membranes from cellulose acetate (CA) and supported membranes consisting of CA porous substrate with a thin dense selective layer from carboxymethyl cellulose (CMC) modified with first-time synthesized Zn-based metal-organic frameworks (Zn(SEB), Zn(BDC)Si, Zn(BIM)) were developed to increase the efficiency of nanofiltration for the removal of heavy metal ions. Zn-based MOFs were characterized by sorption measurements, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The obtained membranes were studied by the spectroscopic (FTIR), standard porosimetry and microscopic (SEM and AFM) methods, and contact angle measurement. The CA porous support was compared with other, prepared in the present work, porous substrates from poly(m-phenylene isophthalamide) and polyacrylonitrile. Membrane performance was tested in the nanofiltration of the model and real mixtures containing heavy metal ions. The improvement of the transport properties of the developed membranes was achieved through Zn-based MOF modification due to their porous structure, hydrophilic properties, and different particle shapes.

7.
Polymers (Basel) ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050278

RESUMO

Membrane fouling is a serious issue in membrane technology which cannot be completely avoided but can be diminished. The perspective technique of membrane modification is the introduction of hydrophilic polymers or polyelectrolytes into the coagulation bath during membrane preparation via non-solvent-induced phase separation. The influence of polyacrylic acid (PAA) molecular weight (100,000, 250,000 and 450,000 g·mol-1) added to the aqueous coagulation bath (0.4-2.0 wt.%) on the polysulfone membrane structure, surface roughness, water contact angle and zeta potential of the selective layer, as well as the separation and antifouling performance, was systematically studied. It was found that membranes obtained via the addition of PAA with higher molecular weight feature smaller pore size and porosity, extremely high hydrophilicity and higher values of negative charge of membrane surface. It was shown that the increase in PAA concentration from 0.4 wt.% to 2.0 wt.% for all studied PAA molecular weights yielded a substantial decrease in water contact angle compared with the reference membrane (65 ± 2°) (from 27 ± 2° to 17 ± 2° for PAA with Mn = 100,000 g·mol-1; from 25 ± 2° to 16 ± 2° for PAA with Mn = 250,000 g·mol-1; and from 19 ± 2° to 10 ± 2° for PAA with Mn = 450,000 g·mol-1). An increase in PAA molecular weight from 100,000 to 450,000 g·mol-1 led to a decrease in membrane permeability, an increase in rejection and tailoring excellent antifouling performance in the ultrafiltration of humic acid solutions. The fouling recovery ratio increased from 73% for the reference membrane up to 91%, 100% and 136% for membranes modified with the addition to the coagulation bath of 1.5 wt.% of PAA with molecular weights of 100,000 g·mol-1, 250,000 g·mol-1 and 450,000 g·mol-1, respectively. Overall, the addition of PAA of different molecular weights to the coagulation bath is an efficient tool to adjust membrane separation and antifouling properties for different separation tasks.

8.
Membranes (Basel) ; 13(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37233595

RESUMO

Presently, water pollution poses a serious threat to the environment; the removal of organic pollutants from resources, especially dyes, is very important. Nanofiltration (NF) is a promising membrane method to carry out this task. In the present work, advanced supported poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) membranes were developed for NF of anionic dyes using bulk (the introduction of graphene oxide (GO) into the polymer matrix) and surface (the deposition of polyelectrolyte (PEL) layers by layer-by-layer (LbL) technique) modifications. The effect of PEL combinations (polydiallyldimethylammonium chloride/polyacrylic acid (PAA), polyethyleneimine (PEI)/PAA, and polyallylamine hydrochloride/PAA) and the number of PEL bilayers deposited by LbL method on properties of PPO-based membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements. Membranes were evaluated in NF of food dye solutions in ethanol (Sunset yellow (SY), Congo red (CR), and Alphazurine (AZ)). The supported PPO membrane, modified with 0.7 wt.% GO and three PEI/PAA bilayers, exhibited optimal transport characteristics: ethanol, SY, CR, and AZ solutions permeability of 0.58, 0.57, 0.50, and 0.44 kg/(m2h atm), respectively, with a high level of rejection coefficients-58% for SY, 63% for CR, and 58% for AZ. It was shown that the combined use of bulk and surface modifications significantly improved the characteristics of the PPO membrane in NF of dyes.

9.
PLoS Genet ; 5(4): e1000445, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19343178

RESUMO

Recent genome-wide (GW) scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value = 6.1x10(-8) and rs910316 in TMED10, P-value = 1.4x10(-7)) and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value = 3x10(-7) and rs849141 in JAZF1, P-value = 3.2x10(-11)). One locus (rs1182188 at GNA12) identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk) and lower-body (hip axis and femur) skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value = 4x10(-5) and rs6817306 in LCORL, P-value = 4x10(-4)), hip axis length (including rs6830062 at LCORL, P-value = 4.8x10(-4) and rs4911494 at UQCC, P-value = 1.9x10(-4)), and femur length (including rs710841 at PRKG2, P-value = 2.4x10(-5) and rs10946808 at HIST1H1D, P-value = 6.4x10(-6)). Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height.


Assuntos
Estatura , Osso e Ossos/química , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esqueleto , População Branca/genética , Adulto Jovem
10.
Membranes (Basel) ; 12(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877856

RESUMO

The application of environmentally friendly and energy-efficient membrane processes allows improvement the ecological safety and sustainability of industrial production. However, the effective application of membrane processes requires novel high-performance thin film composite (TFC) membranes based on biopolymers to solve environmental problems. In this work for the first time novel thin film nanocomposite (TFN) membranes based on biopolymer chitosan succinate (ChS) modified with the metal organic framework iron 1,3,5-benzenetricarboxylate (Fe-BTC) were developed for enhanced pervaporation dehydration. The formation of a selective layer of TFN membranes on the porous membrane-support was carried out by two methods-dynamic technique and physical adsorption. The effect of the membrane formation method and Fe-BTC content in ChS layer on the structure and physicochemical properties of TFN membranes was investigated. The developed TFN ChS-based membranes were evaluated in the pervaporation dehydration of isopropanol (12-30 wt.% water). It was found that TFN ChS-Fe-BTC membranes prepared by two methods demonstrated improved permeation flux compared to the reference TFC ChS membrane. The best transport properties in pervaporation dehydration of isopropanol (12-30 wt.% water) were possessed by TFN membranes with 40 wt.% Fe-BTC prepared by dynamic technique (permeation flux 99-499 g m-2 h-1 and 99.99% water in permeate) and TFN membranes with 5 wt.% Fe-BTC developed by physical adsorption (permeation flux 180-701 g m-2 h-1 and 99.99% water in permeate).

11.
Food Chem ; 373(Pt B): 131456, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34731809

RESUMO

In this work, a reversed-phase dispersive liquid-liquid microextraction procedure based on the decomposition of deep eutectic solvent was suggested for the first time. The procedure was utilized for fast and simple separation of lead and cadmium from vegetable oil samples. The procedure assumed mixing of oil sample and DES based on menthol, formic acid and water. Water as component of DES promoted its decomposition in sample matrix resulting menthol dissolution in the sample phase and dispersion of aqueous formic acid solution. In this procedure menthol acted as a dispersive solvent during DES decomposition for dispersion of aqueous formic acid solution. The metals were determined by the square-wave anodic stripping voltammetry. The limits of detection, were 0.01 µg kg-1 for lead and 0.006 µg kg-1 for cadmium. The RSD was less then 6% for both analytes. The enrichment factor was 36 and 39 for lead and cadmium, respectively.


Assuntos
Microextração em Fase Líquida , Cádmio , Solventes Eutéticos Profundos , Óleos de Plantas , Solventes
12.
Membranes (Basel) ; 12(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36295726

RESUMO

Thin-film composite membranes (TFC) obtained by the formation of a selective layer on a porous membrane-substrate via interfacial polymerization (IP) are indispensable for separation procedures in reverse osmosis, nanofiltration, pervaporation, and gas separation. Achieving high selectivity and permeability for TFC membranes is still one of the main challenges in membrane science and technology. This study focuses on the development of thin film nanocomposite (TFN) membranes with a hierarchically structured polyamide (PA)/chitosan succinate (ChS) selective layer embedded with a metal-organic framework of iron 1,3,5-benzenetricarboxylate (Fe-BTC) for the enhanced pervaporation dehydration of isopropanol. The aim of this work was to study the effect of Fe-BTC incorporation into the ChS interlayer and PA selective layer, obtained via IP, on the structure, properties, and performance of pervaporation TFN membranes. The structure and hydrophilicity of the developed TFN membranes were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), along with water contact angle measurements. The developed TFN membranes were studied in the pervaporation dehydration of isopropanol (12-30 wt % water). It was found that incorporation of Fe-BTC into the ChS interlayer yielded the formation of a smoother, more uniform, and defect-free PA ultrathin selective layer via IP, due to the amorpho-crystalline structure of particles serving as the amine storage reservoir and led to an increase in membrane selectivity toward water, and a slight decrease in permeation flux compared to the ChS interlayered TFC membranes. The best pervaporation performance was demonstrated by the TFN membrane with a ChS-Fe-BTC interlayer and the addition of 0.03 wt % Fe-BTC in the PA layer, yielding a permeation flux of 197-826 g·m-2·h-1 and 98.50-99.99 wt % water in the permeate, in the pervaporation separation of isopropanol/water mixtures (12-30 wt % water).

13.
Front Physiol ; 12: 679930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220545

RESUMO

Cardiac and renal function are inextricably connected through both hemodynamic and neurohormonal mechanisms, and the interaction between these organ systems plays an important role in adaptive and pathophysiologic remodeling of the heart, as well as in the response to renally acting therapies. Insufficient understanding of the integrative function or dysfunction of these physiological systems has led to many examples of unexpected or incompletely understood clinical trial results. Mathematical models of heart and kidney physiology have long been used to better understand the function of these organs, but an integrated model of renal function and cardiac function and cardiac remodeling has not yet been published. Here we describe an integrated cardiorenal model that couples existing cardiac and renal models, and expands them to simulate cardiac remodeling in response to pressure and volume overload, as well as hypertrophy regression in response to angiotensin receptor blockers and beta-blockers. The model is able to reproduce different patterns of hypertrophy in response to pressure and volume overload. We show that increases in myocyte diameter are adaptive in pressure overload not only because it normalizes wall shear stress, as others have shown before, but also because it limits excess volume accumulation and further elevation of cardiac stresses by maintaining cardiac output and renal sodium and water balance. The model also reproduces the clinically observed larger LV mass reduction with angiotensin receptor blockers than with beta blockers. We further provide a mechanistic explanation for this difference by showing that heart rate lowering with beta blockers limits the reduction in peak systolic wall stress (a key signal for myocyte hypertrophy) relative to ARBs.

14.
Polymers (Basel) ; 13(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451344

RESUMO

Wide application of ultrafiltration in different industrial fields requires the development of new membranes with tailored properties and good antifouling stability. This study is devoted to the improvement of ultrafiltration properties of poly(m-phenylene isophtalamide) (PA) membranes by modification with titanium oxide (TiO2) particles. The introduction of TiO2 particles improved membrane separation performance and increased antifouling stability and cleaning ability under UV irradiation. The developed membranes were characterized by scanning electron and atomic force microscopy methods, the measurements of water contact angle, and total porosimetry. The transport properties of the PA and PA/TiO2 membranes were tested in ultrafiltration of industrially important feeds: coolant lubricant (cutting fluid) emulsion (5 wt.% in water) and bovine serum albumin (BSA) solution (0.5 wt.%). The PA/TiO2 (0.3 wt.%) membrane was found to possess optimal transport characteristics in ultrafiltration of coolant lubricant emulsion due to the highest pure water and coolant lubricant fluxes (1146 and 32 L/(m2 h), respectively), rejection coefficient (100%), and flux recovery ratio (84%). Furthermore, this membrane featured improved ability of surface contamination degradation after UV irradiation in prolonged ultrafiltration of BSA, demonstrating a high flux recovery ratio (89-94%).

15.
Membranes (Basel) ; 12(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35054540

RESUMO

Nowadays, nanofiltration is widely used for water treatment due to its advantages, such as energy-saving, sustainability, high efficiency, and compact equipment. In the present work, novel nanofiltration membranes based on the polymer of intrinsic microporosity PIM-1 modified by metal-organic frameworks (MOFs)-MIL-140A and MIL-125-were developed to increase nanofiltration efficiency for the removal of heavy metal ions and dyes. The structural and physicochemical properties of the developed PIM-1 and PIM-1/MOFs membranes were studied by the spectroscopic technique (FTIR), microscopic methods (SEM and AFM), and contact angle measurement. Transport properties of the developed PIM-1 and PIM-1/MOFs membranes were evaluated in the nanofiltration of the model and real mixtures containing food dyes and heavy metal ions. It was found that the introduction of MOFs (MIL-140A and MIL-125) led to an increase in membrane permeability. It was demonstrated that the membranes could be used to remove and concentrate the food dyes and heavy metal ions from model and real mixtures.

16.
Polymers (Basel) ; 13(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668120

RESUMO

Membrane methods, especially pervaporation, are quickly growing up. In line with that, effective membrane materials based on biopolymers are required for the industrially significant mixtures separation. To essentially improve membrane transport characteristics, the application of the surface or/and bulk modifications can be carried out. In the present study, novel dense and supported membranes based on hydroxyethyl cellulose (HEC)/sodium alginate (SA) were developed for pervaporation dehydration of isopropanol using several approaches: (1) the selection of the optimal ratio of polymers, (2) the introduction of fullerenol in blend polymer matrix, (3) the selection of the optimal cross-linking agent for the membranes, (4) the application of layer-by-layer deposition of polyelectrolytes on supported membrane surface (poly(sodium 4-styrenesulfonate) (PSS)/poly(allylamine hydrochloride) (PAH) and PSS/SA). Structural and physicochemical characteristics of the membranes were analyzed by different methods. A cross-linked supported membrane based on HEC/SA/fullerenol (5%) composite possessed the following transport characteristics in pervaporation dehydration of isopropanol (12-50 wt.% water): 0.42-1.72 kg/(m2h) permeation flux, and 77.8-99.99 wt.% water content in the permeate. The surface modification of this membrane with 5 bilayers of PSS/PAH and PSS/SA resulted in the increase of permeation flux up to 0.47-3.0 and 0.46-1.9 kg/(m2h), respectively, with lower selectivity.

17.
Ann Rheum Dis ; 69(12): 2102-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20570838

RESUMO

OBJECTIVE: Osteoarthritis (OA) and osteoporosis are often considered to lie at opposite ends of a spectrum of bone phenotypes. Lumbar degenerative disc disease (LDD) may be associated with low back pain (LBP) and is similar in many ways to OA. LDD is reported in small studies to be associated with increased spine bone mineral density (BMD). The present work aimed to confirm this association in a large population sample using MRI and explore the relationship further, in particular to determine whether it is mediated genetically. METHODS: A population based sample (N = 908, age range 32-74 years) of UK female twins having MRI of the lumbar spine was used in this study. LDD traits and summary measures and their relationship with BMD at the lumbar spine and hip were examined using multivariate multiple regression and maximum likelihood based variance decomposition. RESULTS: There was a significant positive correlation between LDD and BMD at the lumbar spine and hip, which remained significant after adjustment for confounders. Both traits were highly heritable and the associations between them were mediated genetically. CONCLUSIONS: A clear, significant and independent association of BMD at hip and lumbar spine with LDD was found which is, in part, genetically mediated. The association with the non-axial site, the hip, is of particular interest and suggests a systemic bone effect. This should encourage the search for pleiotropic genes to help in the understanding of the bone-cartilage relationship. Moreover, genetic variants identified could provide novel therapeutic targets in the management of LBP.


Assuntos
Densidade Óssea/fisiologia , Doenças em Gêmeos/fisiopatologia , Degeneração do Disco Intervertebral/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea/genética , Doenças em Gêmeos/genética , Métodos Epidemiológicos , Feminino , Predisposição Genética para Doença , Articulação do Quadril/fisiopatologia , Humanos , Degeneração do Disco Intervertebral/genética , Vértebras Lombares/fisiopatologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Adulto Jovem
18.
Cytokine ; 51(1): 28-34, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20488723

RESUMO

BACKGROUND: Tumor necrosis factor alpha (TNFalpha) is a cytokine involved in inflammatory, immune, and metabolic events. TNFalpha signals are mediated through activation of two receptors, one of which is tumor necrosis factor receptor TNF-RII. OBJECTIVE: To examine the effects of genetic and environmental factors on TNF-RII plasma concentration and its association with polymorphisms in the TNF-RII gene locus. METHODS: The levels of sTNF-RII were determined in 897 individuals. The association between sTNF-RII and polymorphisms in its structural gene locus was examined by pedigree-based association analyses (PDT) and transmission disequilibrium tests (TDTs). RESULTS: 49.57% of the adjusted sTNF-RII variability was attributable to genetic factors. sTNF-RII plasma levels were nominally associated with the genomic region spanning TNF-RII promoter and the first intron, represented by rs976881 (p=0.029). Although after correction for multiple testing this PDT signal formally did not reach statistical significance, it was reflected also in series of TDTs and further confirmed by association observed for haplotype of rs976881 with rs590368 (nominal p=0.006) and by ANOVA. CONCLUSIONS: sTNF-RII plasma concentration is determined by both genetic and environmental factors. Our results suggest association between sTNF-RII levels and polymorphisms in vicinity to TNF-RII promoter region. This finding requires further thorough validation in other populations.


Assuntos
Polimorfismo Genético , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Receptores Tipo II do Fator de Necrose Tumoral/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos/genética , Feminino , Marcadores Genéticos , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
19.
Ann Hum Biol ; 37(6): 754-66, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20446819

RESUMO

BACKGROUND: Human craniofacial morphology is characterized by considerable diversity among individuals. The ENPP1 gene is essential for bone physiology. However, the potential effects of its genetic variants on head size phenotypes have not yet been studied. AIM: The aim of this research was to investigate the association of polymorphisms in the ENPP1 locus with normal variability of craniofacial phenotypes. SUBJECTS AND METHODS: Fourteen SNPs and 13 haplotypes in the ENPP1 locus were tested for association with six head size traits in 1042 Western Eurasian individuals. RESULTS: The most significant and consistent association was observed between upper facial height and the polymorphisms located near the promoter region and upstream from ENPP1 gene (p = 0.00009), which remained significant after adjustment for multiple testing. Additionally, association signals were detected between head breadths and lower face height, and markers residing in or close to the promoter and 3' untranslated regions of the ENPP1 gene (p < 0.05). CONCLUSIONS: The findings obtained in this study suggest that the upstream, promoter and 3' untranslated regions in the ENPP1 locus harbor genetic variants affecting different aspects of craniofacial morphology. Further research is required to validate the relevancy of the potentially functional ENPP1 regions to normal and pathologic craniofacial growth.


Assuntos
Face/anatomia & histologia , Cabeça/anatomia & histologia , Diester Fosfórico Hidrolases/genética , Polimorfismo de Nucleotídeo Único , Pirofosfatases/genética , Regiões 3' não Traduzidas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Família , Feminino , Testa/anatomia & histologia , Estudos de Associação Genética , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Nariz/anatomia & histologia , Fenótipo , Regiões Promotoras Genéticas , Federação Russa , Crânio/anatomia & histologia , Adulto Jovem
20.
Talanta ; 206: 119759, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514836

RESUMO

The year 2019 marks the 150th year of the founding of analytical chemistry department at St. Petersburg State University and of the founding of the periodic table of chemical elements as proposed by Professor Dmitry Mendeleev. 2019 has been decreed by chemists as the "International Year of the Periodic Table" in celebration of these historical events. A celebration marking this anniversary was held at the university on March 1. This historical account will recount the early days of the department and Mendeleev's development of the periodic table, and then highlight some of the major analytical contributions of the department.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA