Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 611(7936): 461-466, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36224393

RESUMO

When electric conductors differ from their mirror image, unusual chiral transport coefficients appear that are forbidden in achiral metals, such as a non-linear electric response known as electronic magnetochiral anisotropy (eMChA)1-6. Although chiral transport signatures are allowed by symmetry in many conductors without a centre of inversion, they reach appreciable levels only in rare cases in which an exceptionally strong chiral coupling to the itinerant electrons is present. So far, observations of chiral transport have been limited to materials in which the atomic positions strongly break mirror symmetries. Here, we report chiral transport in the centrosymmetric layered kagome metal CsV3Sb5 observed via second-harmonic generation under an in-plane magnetic field. The eMChA signal becomes significant only at temperatures below [Formula: see text] 35 K, deep within the charge-ordered state of CsV3Sb5 (TCDW ≈ 94 K). This temperature dependence reveals a direct correspondence between electronic chirality, unidirectional charge order7 and spontaneous time-reversal symmetry breaking due to putative orbital loop currents8-10. We show that the chirality is set by the out-of-plane field component and that a transition from left- to right-handed transport can be induced by changing the field sign. CsV3Sb5 is the first material in which strong chiral transport can be controlled and switched by small magnetic field changes, in stark contrast to structurally chiral materials, which is a prerequisite for applications in chiral electronics.

2.
Nature ; 578(7793): 66-69, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025016

RESUMO

The discovery of superconductivity at 200 kelvin in the hydrogen sulfide system at high pressures1 demonstrated the potential of hydrogen-rich materials as high-temperature superconductors. Recent theoretical predictions of rare-earth hydrides with hydrogen cages2,3 and the subsequent synthesis of LaH10 with a superconducting critical temperature (Tc) of 250 kelvin4,5 have placed these materials on the verge of achieving the long-standing goal of room-temperature superconductivity. Electrical and X-ray diffraction measurements have revealed a weakly pressure-dependent Tc for LaH10 between 137 and 218 gigapascals in a structure that has a face-centred cubic arrangement of lanthanum atoms5. Here we show that quantum atomic fluctuations stabilize a highly symmetrical [Formula: see text] crystal structure over this pressure range. The structure is consistent with experimental findings and has a very large electron-phonon coupling constant of 3.5. Although ab initio classical calculations predict that this [Formula: see text] structure undergoes distortion at pressures below 230 gigapascals2,3, yielding a complex energy landscape, the inclusion of quantum effects suggests that it is the true ground-state structure. The agreement between the calculated and experimental Tc values further indicates that this phase is responsible for the superconductivity observed at 250 kelvin. The relevance of quantum fluctuations calls into question many of the crystal structure predictions that have been made for hydrides within a classical approach and that currently guide the experimental quest for room-temperature superconductivity6-8. Furthermore, we find that quantum effects are crucial for the stabilization of solids with high electron-phonon coupling constants that could otherwise be destabilized by the large electron-phonon interaction9, thus reducing the pressures required for their synthesis.

3.
J Am Chem Soc ; 146(10): 6784-6795, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38430128

RESUMO

One-dimensional (1D) systems persist as some of the most interesting because of the rich physics that emerges from constrained degrees of freedom. A desirable route to harness the properties therein is to grow bulk single crystals of a physically three-dimensional (3D) but electronically 1D compound. Most bulk compounds which approach the electronic 1D limit still field interactions across the other two crystallographic directions and, consequently, deviate from the 1D models. In this paper, we lay out chemical concepts to realize the physics of 1D models in 3D crystals. These are based on both structural and electronic arguments. We present BiIr4Se8, a bulk crystal consisting of linear Bi2+ chains within a scaffolding of IrSe6 octahedra, as a prime example. Through crystal structure analysis, density functional theory calculations, X-ray diffraction, and physical property measurements, we demonstrate the unique 1D electronic configuration in BiIr4Se8. This configuration at ambient temperature is a gapped Su-Schriefer-Heeger system, generated by way of a canonical Peierls distortion involving Bi dimerization that relieves instabilities in a 1D metallic state. At 190 K, an additional 1D charge density wave distortion emerges, which affects the Peierls distortion. The experimental evidence validates our design principles and distinguishes BiIr4Se8 among other quasi-1D bulk compounds. We thus show that it is possible to realize unique electronically 1D materials applying chemical concepts.

4.
Nano Lett ; 23(5): 1794-1800, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36825982

RESUMO

VSe2 is a layered compound that has attracted great attention due to its proximity to a ferromagnetic state that is quenched by its charge density wave (CDW) phase. In the monolayer limit, unrelated experiments have reported different CDW orders with different transition temperatures, making this monolayer very controversial. Here we perform first-principles nonperturbative anharmonic phonon calculations in monolayer VSe2 in order to estimate the CDW order and the corresponding transition temperature. They reveal that monolayer VSe2 develops two independent charge density wave orders that compete as a function of strain. Variations of only 1.5% in the lattice parameter are enough to stabilize one order or the other. Moreover, we analyze the impact of external Lennard-Jones interactions, showing that these can act together with anharmonicity to suppress the CDW orders. Our results solve previous experimental contradictions, highlighting the high tunability and substrate dependency of the CDW orders of monolayer VSe2.

5.
Nature ; 532(7597): 81-4, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27018657

RESUMO

The quantum nature of the proton can crucially affect the structural and physical properties of hydrogen compounds. For example, in the high-pressure phases of H2O, quantum proton fluctuations lead to symmetrization of the hydrogen bond and reduce the boundary between asymmetric and symmetric structures in the phase diagram by 30 gigapascals (ref. 3). Here we show that an analogous quantum symmetrization occurs in the recently discovered sulfur hydride superconductor with a superconducting transition temperature Tc of 203 kelvin at 155 gigapascals--the highest Tc reported for any superconductor so far. Superconductivity occurs via the formation of a compound with chemical formula H3S (sulfur trihydride) with sulfur atoms arranged on a body-centred cubic lattice. If the hydrogen atoms are treated as classical particles, then for pressures greater than about 175 gigapascals they are predicted to sit exactly halfway between two sulfur atoms in a structure with Im3m symmetry. At lower pressures, the hydrogen atoms move to an off-centre position, forming a short H-S covalent bond and a longer H···S hydrogen bond in a structure with R3m symmetry. X-ray diffraction experiments confirm the H3S stoichiometry and the sulfur lattice sites, but were unable to discriminate between the two phases. Ab initio density-functional-theory calculations show that quantum nuclear motion lowers the symmetrization pressure by 72 gigapascals for H3S and by 60 gigapascals for D3S. Consequently, we predict that the Im3m phase dominates the pressure range within which the high Tc was measured. The observed pressure dependence of Tc is accurately reproduced in our calculations for the phase, but not for the R3m phase. Therefore, the quantum nature of the proton fundamentally changes the superconducting phase diagram of H3S.

6.
Nat Mater ; 19(9): 964-968, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32284598

RESUMO

Phonon polaritons-light coupled to lattice vibrations-in polar van der Waals crystals are promising candidates for controlling the flow of energy on the nanoscale due to their strong field confinement, anisotropic propagation and ultra-long lifetime in the picosecond range1-5. However, the lack of tunability of their narrow and material-specific spectral range-the Reststrahlen band-severely limits their technological implementation. Here, we demonstrate that intercalation of Na atoms in the van der Waals semiconductor α-V2O5 enables a broad spectral shift of Reststrahlen bands, and that the phonon polaritons excited show ultra-low losses (lifetime of 4 ± 1 ps), similar to phonon polaritons in a non-intercalated crystal (lifetime of 6 ± 1 ps). We expect our intercalation method to be applicable to other van der Waals crystals, opening the door for the use of phonon polaritons in broad spectral bands in the mid-infrared domain.

7.
Nano Lett ; 20(7): 4809-4815, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32496779

RESUMO

Low-dimensional systems with a vanishing band gap and a large electron-hole interaction have been proposed to be unstable toward exciton formation. As the exciton binding energy increases in low dimension, conventional wisdom suggests that excitonic insulators should be more stable in 2D than in 3D. Here we study the effects of the electron-hole interaction and anharmonicity in single-layer TiSe2. We find that, contrary to the bulk case and to the generally accepted picture, in single-layer TiSe2, the electron-hole exchange interaction is much smaller in 2D than in 3D and it has weak effects on phonon spectra. By calculating anharmonic phonon spectra within the stochastic self-consistent harmonic approximation, we obtain TCDW ≈ 440 K for an isolated and undoped single layer and TCDW ≈ 364 K for an electron-doping n = 4.6 × 1013 cm-2, close to the experimental result of 200-280 K on supported samples. Our work demonstrates that anharmonicity and doping melt the charge density wave in single-layer TiSe2.

8.
Phys Rev Lett ; 125(10): 106101, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955304

RESUMO

Contradictory experiments have been reported about the dimensionality effect on the charge-density-wave transition in 2H NbSe_{2}. While scanning tunneling experiments on single layers grown by molecular beam epitaxy measure a charge-density-wave transition temperature in the monolayer similar to the bulk, around 33 K, Raman experiments on exfoliated samples observe a large enhancement of the transition temperature up to 145 K. By employing a nonperturbative approach to deal with anharmonicity, we calculate from first principles the temperature dependence of the phonon spectra both for bulk and monolayer. In both cases, the charge-density-wave transition temperature is estimated as the temperature at which the phonon energy of the mode driving the structural instability vanishes. The obtained transition temperature in the bulk is around 59 K, in rather good agreement with experiments, and it is just slightly increased in the single-layer limit to 73 K, showing the weak dependence of the transition on dimensionality. Environmental factors could motivate the disagreement between the transition temperatures reported by experiments. Our analysis also demonstrates the predominance of ionic fluctuations over electronic ones in the melting of the charge-density-wave order.

9.
Nano Lett ; 19(5): 3098-3103, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932501

RESUMO

At ambient pressure, bulk 2H-NbS2 displays no charge density wave instability, which is at odds with the isostructural and isoelectronic compounds 2H-NbSe2, 2H-TaS2, and 2H-TaSe2, and in disagreement with harmonic calculations. Contradictory experimental results have been reported in supported single layers, as 1H-NbS2 on Au(111) does not display a charge density wave, whereas 1H-NbS2 on 6H-SiC(0001) endures a 3 × 3 reconstruction. Here, by carrying out quantum anharmonic calculations from first-principles, we evaluate the temperature dependence of phonon spectra in NbS2 bulk and single layer as a function of pressure/strain. For bulk 2H-NbS2, we find excellent agreement with inelastic X-ray spectra and demonstrate the removal of charge ordering due to anharmonicity. In the two-dimensional limit, we find an enhanced tendency toward charge density wave order. Freestanding 1H-NbS2 undergoes a 3 × 3 reconstruction, in agreement with data on 6H-SiC(0001) supported samples. Moreover, as strains smaller than 0.5% in the lattice parameter are enough to completely remove the 3 × 3 superstructure, deposition of 1H-NbS2 on flexible substrates or a small charge transfer via field-effect could lead to devices with dynamical switching on/off of charge order.

10.
Phys Rev Lett ; 122(7): 075901, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848620

RESUMO

Since 2014 the layered semiconductor SnSe in the high-temperature Cmcm phase is known to be the most efficient intrinsic thermoelectric material. Making use of first-principles calculations we show that its vibrational and thermal transport properties are determined by huge nonperturbative anharmonic effects. We show that the transition from the Cmcm phase to the low-symmetry Pnma is a second-order phase transition driven by the collapse of a zone border phonon, whose frequency vanishes at the transition temperature. Our calculations show that the spectral function of the in-plane vibrational modes are strongly anomalous with shoulders and double-peak structures. We calculate the lattice thermal conductivity obtaining good agreement with experiments only when nonperturbative anharmonic scattering is included. Our results suggest that the good thermoelectric efficiency of SnSe is strongly affected by the nonperturbative anharmonicity.

11.
Phys Rev Lett ; 120(5): 057402, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481166

RESUMO

The recent claim of having produced metallic hydrogen in the laboratory relies on measurements of optical spectra. Here, we present first-principles calculations of the reflectivity of hydrogen between 400 and 600 GPa in the I4_{1}/amd crystal structure, the one predicted at these pressures, based on both time-dependent density functional and Eliashberg theories, thus, covering the optical properties from the infrared to the ultraviolet regimes. Our results show that atomic hydrogen displays an interband plasmon at around 6 eV that abruptly suppresses the reflectivity, while the large superconducting gap energy yields a sharp decrease of the reflectivity in the infrared region approximately at 120 meV. The experimentally estimated electronic scattering rates in the 0.7-3 eV range are in agreement with our theoretical estimations, which show that the huge electron-phonon interaction of the system dominates the electronic scattering in this energy range. The remarkable features in the optical spectra predicted here encourage extending the optical measurements to the infrared and ultraviolet regions as our results suggest optical measurements can potentially identify high-pressure phases of hydrogen.

12.
Phys Chem Chem Phys ; 19(8): 6246-6256, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28195284

RESUMO

A combined experimental-theoretical study on the temperature dependence of the X-ray absorption near-edge structure (XANES) and nuclear magnetic resonance (NMR) spectra of periclase (MgO), spinel (MgAl2O4), corundum (α-Al2O3), berlinite (α-AlPO4), stishovite and α-quartz (SiO2) is reported. Predictive calculations are presented when experimental data are not available. For these light-element oxides, both experimental techniques detect systematic effects related to quantum thermal vibrations which are well reproduced by density-functional theory simulations. In calculations, thermal fluctuations of the nuclei are included by considering nonequilibrium configurations according to finite-temperature quantum statistics at the quasiharmonic level. The influence of nuclear quantum fluctuations on XANES and NMR spectroscopies is particularly sensitive to the coordination number of the probed cation. Furthermore, the relative importance of nuclear dynamics and thermal expansion is quantified over a large range of temperatures.

13.
Phys Rev Lett ; 114(15): 157004, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933334

RESUMO

We use first-principles calculations to study structural, vibrational, and superconducting properties of H_{2}S at pressures P≥200 GPa. The inclusion of zero-point energy leads to two different possible dissociations of H2S, namely 3H2S→2H3S+S and 5H2S→3H3S+HS2, where both H3S and HS2 are metallic. For H3S, we perform nonperturbative calculations of anharmonic effects within the self-consistent harmonic approximation and show that the harmonic approximation strongly overestimates the electron-phonon interaction (λ≈2.64 at 200 GPa) and Tc. Anharmonicity hardens H─S bond-stretching modes and softens H─S bond-bending modes. As a result, the electron-phonon coupling is suppressed by 30% (λ≈1.84 at 200 GPa). Moreover, while at the harmonic level Tc decreases with increasing pressure, the inclusion of anharmonicity leads to a Tc that is almost independent of pressure. High-pressure hydrogen sulfide is a strongly anharmonic superconductor.

14.
Nat Phys ; 20(4): 579-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638456

RESUMO

Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries that are broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders are competing. This is exemplified by charge order in some kagome systems, where evidence of nematicity and flux order from orbital currents remains inconclusive due to contradictory measurements. Here we clarify this controversy by fabricating highly symmetric samples of a member of this family, CsV3Sb5, and measuring their transport properties. We find that a measurable anisotropy is absent at any temperature in the unperturbed material. However, a pronounced in-plane transport anisotropy appears when either weak magnetic fields or strains are present. A symmetry analysis indicates that a perpendicular magnetic field can indeed lead to in-plane anisotropy by inducing a flux order coexisting with more conventional bond order. Our results provide a unifying picture for the controversial charge order in kagome metals and highlight the need for materials control at the microscopic scale in the identification of broken symmetries.

15.
Phys Rev Lett ; 111(17): 177002, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24206514

RESUMO

Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.

16.
Proc Natl Acad Sci U S A ; 107(17): 7646-51, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20382865

RESUMO

Experimental studies established that calcium undergoes several counterintuitive transitions under pressure: fcc --> bcc --> simple cubic --> Ca-IV --> Ca-V, and becomes a good superconductor in the simple cubic and higher-pressure phases. Here, using ab initio evolutionary simulations, we explore the behavior of Ca under pressure and find a number of new phases. Our structural sequence differs from the traditional picture for Ca, but is similar to that for Sr. The beta-tin (I4(1)/amd) structure, rather than simple cubic, is predicted to be the theoretical ground state at 0 K and 33-71 GPa. This structure can be represented as a large distortion of the simple cubic structure, just as the higher-pressure phases stable between 71 and 134 GPa. The structure of Ca-V, stable above 134 GPa, is a complex host-guest structure. According to our calculations, the predicted phases are superconductors with Tc increasing under pressure and reaching approximately 20 K at 120 GPa, in good agreement with experiment.


Assuntos
Algoritmos , Cálcio/química , Modelos Químicos , Modelos Moleculares , Pressão , Simulação por Computador , Condutividade Elétrica , Difração de Raios X
17.
Nat Commun ; 14(1): 4458, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491484

RESUMO

Helium, the second most abundant element in the universe, exhibits an extremely large electronic band gap of about 20 eV at ambient pressures. While the metallization pressure of helium has been accurately determined, thus far little attention has been paid to the specific mechanisms driving the band-gap closure and electronic properties of this quantum crystal in the terapascal regime (1 TPa = 10 Mbar). Here, we employ density functional theory and many-body perturbation calculations to fill up this knowledge gap. It is found that prior to reaching metallicity helium becomes an excitonic insulator (EI), an exotic state of matter in which electrostatically bound electron-hole pairs may form spontaneously. Furthermore, we predict metallic helium to be a superconductor with a critical temperature of ≈ 20 K just above its metallization pressure and of ≈ 70 K at 100 TPa. These unforeseen phenomena may be critical for improving our fundamental understanding and modeling of celestial bodies.

18.
Nat Commun ; 14(1): 1674, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966129

RESUMO

The discovery of 250-kelvin superconducting lanthanum polyhydride under high pressure marked a significant advance toward the realization of a room-temperature superconductor. X-ray diffraction (XRD) studies reveal a nonstoichiometric LaH9.6 or LaH10±Î´ polyhydride responsible for the superconductivity, which in the literature is commonly treated as LaH10 without accounting for stoichiometric defects. Here, we discover significant nuclear quantum effects (NQE) in this polyhydride, and demonstrate that a minor amount of stoichiometric defects will cause quantum proton diffusion in the otherwise rigid lanthanum lattice in the ground state. The diffusion coefficient reaches ~10-7 cm2/s in LaH9.63 at 150 gigapascals and 240 kelvin, approaching the upper bound value of interstitial hydrides at comparable temperatures. A puzzling phenomenon observed in previous experiments, the positive pressure dependence of the superconducting critical temperature Tc below 150 gigapascals, is explained by a modulation of the electronic structure due to a premature distortion of the hydrogen lattice in this quantum fluxional structure upon decompression, and resulting changes of the electron-phonon coupling. This finding suggests the coexistence of the quantum proton fluxion and hydrogen-induced superconductivity in this lanthanum polyhydride, and leads to an understanding of the structural nature and superconductivity of nonstoichiomectric hydrogen-rich materials.

19.
Nat Commun ; 14(1): 7005, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919299

RESUMO

Kondo lattices are ideal testbeds for the exploration of heavy-fermion quantum phases of matter. While our understanding of Kondo lattices has traditionally relied on complex bulk f-electron systems, transition metal dichalcogenide heterobilayers have recently emerged as simple, accessible and tunable 2D Kondo lattice platforms where, however, their ground state remains to be established. Here we present evidence of a coherent ground state in the 1T/1H-TaSe2 heterobilayer by means of scanning tunneling microscopy/spectroscopy at 340 mK. Our measurements reveal the existence of two symmetric electronic resonances around the Fermi energy, a hallmark of coherence in the spin lattice. Spectroscopic imaging locates both resonances at the central Ta atom of the charge density wave of the 1T phase, where the localized magnetic moment is held. Furthermore, the evolution of the electronic structure with the magnetic field reveals a non-linear increase of the energy separation between the electronic resonances. Aided by ab initio and auxiliary-fermion mean-field calculations, we demonstrate that this behavior is inconsistent with a fully screened Kondo lattice, and suggests a ground state with magnetic order mediated by conduction electrons. The manifestation of magnetic coherence in TMD-based 2D Kondo lattices enables the exploration of magnetic quantum criticality, Kondo breakdown transitions and unconventional superconductivity in the strict two-dimensional limit.

20.
J Phys Condens Matter ; 34(23)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35255480

RESUMO

Reaching superconductivity at ambient conditions is one of the biggest scientific dreams. The discoveries in the last few years at high pressures place hydrogen-based compounds as the best candidates for making it true. As the recent history shows, first-principles calculations are expected to continue guiding the experimental quest in the right track in the coming years. Considering that ionic quantum fluctuations largely affect the crystal structure and the vibrational properties of superconducting hydrides, in many cases making them thermodynamically stable at much lower pressures than expected, it will be crucial to include such effects on the futureab initiopredictions. The prospects for low-pressure high critical-temperature compounds are wide open, even at ambient pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA