Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 484: 1-11, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065906

RESUMO

The Balbiani body (Bb) is the first marker of polarity in vertebrate oocytes. The Bb is a conserved structure found in diverse animals including insects, fish, amphibians, and mammals. During early zebrafish oogenesis, the Bb assembles as a transient aggregate of mRNA, proteins, and membrane-bound organelles at the presumptive vegetal side of the oocyte. As the early oocyte develops, the Bb appears to grow slowly, until at the end of stage I of oogenesis it disassembles and deposits its cargo of localized mRNAs and proteins. In fish and frogs, this cargo includes the germ plasm as well as gene products required to specify dorsal tissues of the future embryo. We demonstrate that the Bb is a stable, solid structure that forms a size exclusion barrier similar to other biological hydrogels. Despite its central role in oocyte polarity, little is known about the mechanism behind the Bb's action. Analysis of the few known protein components of the Bb is insufficient to explain how the Bb assembles, translocates, and disassembles. We isolated Bbs from zebrafish oocytes and performed mass spectrometry to define the Bb proteome. We successfully identified 77 proteins associated with the Bb sample, including known Bb proteins and novel RNA-binding proteins. In particular, we identified Cirbpa and Cirbpb, which have both an RNA-binding domain and a predicted self-aggregation domain. In stage I oocytes, Cirbpa and Cirbpb localize to the Bb rather than the nucleus (as in somatic cells), indicating that they may have a specialized function in the germ line. Both the RNA-binding domain and the self-aggregation domain are sufficient to localize to the Bb, suggesting that Cirbpa and Cirbpb interact with more than just their mRNA targets within the Bb. We propose that Cirbp proteins crosslink mRNA cargo and proteinaceous components of the Bb as it grows. Beyond Cirbpa and Cirbpb, our proteomics dataset presents many candidates for further study, making it a valuable resource for building a comprehensive mechanism for Bb function at a protein level.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Polaridade Celular/genética , Mamíferos/metabolismo , Oócitos/metabolismo , Oogênese/genética , Organelas/metabolismo , Proteômica , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
PLoS Genet ; 13(9): e1006983, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28880872

RESUMO

Animal-vegetal (AV) polarity of most vertebrate eggs is established during early oogenesis through the formation and disassembly of the Balbiani Body (Bb). The Bb is a structure conserved from insects to humans that appears as a large granule, similar to a mRNP granule composed of mRNA and proteins, that in addition contains mitochondria, ER and Golgi. The components of the Bb, which have amyloid-like properties, include germ cell and axis determinants of the embryo that are anchored to the vegetal cortex upon Bb disassembly. Our lab discovered in zebrafish the only gene known to function in Bb disassembly, microtubule-actin crosslinking factor 1a (macf1a). Macf1 is a conserved, giant multi-domain cytoskeletal linker protein that can interact with microtubules (MTs), actin filaments (AF), and intermediate filaments (IF). In macf1a mutant oocytes the Bb fails to dissociate, the nucleus is acentric, and AV polarity of the oocyte and egg fails to form. The cytoskeleton-dependent mechanism by which Macf1a regulates Bb mRNP granule dissociation was unknown. We found that disruption of AFs phenocopies the macf1a mutant phenotype, while MT disruption does not. We determined that cytokeratins (CK), a type of IF, are enriched in the Bb. We found that Macf1a localizes to the Bb, indicating a direct function in regulating its dissociation. We thus tested if Macf1a functions via its actin binding domain (ABD) and plectin repeat domain (PRD) to integrate cortical actin and Bb CK, respectively, to mediate Bb dissociation at the oocyte cortex. We developed a CRISPR/Cas9 approach to delete the exons encoding these domains from the macf1a endogenous locus, while maintaining the open reading frame. Our analysis shows that Macf1a functions via its ABD to mediate Bb granule dissociation and nuclear positioning, while the PRD is dispensable. We propose that Macf1a does not function via its canonical mechanism of linking two cytoskeletal systems together in dissociating the Bb. Instead our results suggest that Macf1a functions by linking one cytoskeletal system, cortical actin, to another structure, the Bb, where Macf1a is localized. Through this novel linking process, it dissociates the Bb at the oocyte cortex, thus specifying the AV axis of the oocyte and future egg. To our knowledge, this is also the first study to use genome editing to unravel the module-dependent function of a cytoskeletal linker.


Assuntos
Polaridade Celular/genética , Oogênese/genética , Plaquinas/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Citoesqueleto de Actina/genética , Animais , Células Germinativas/crescimento & desenvolvimento , Complexo de Golgi/genética , Humanos , Filamentos Intermediários/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
3.
Adv Exp Med Biol ; 953: 173-207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27975273

RESUMO

Cell polarity generates intracellular asymmetries and functional regionalization in tissues and morphogenetic processes. Cell polarity in development often relies on mechanisms of RNA localization to specific subcellular domains to define the identity of future developing tissues. The totipotent egg of most animals illustrates in a grand way the importance of cell polarity and RNA localization in regulating multiple crucial developmental events. The polarization of the egg arises during its development in oogenesis. RNAs localize asymmetrically in the early oocyte defining its animal-vegetal (AV) axis, which upon further elaboration in mid- and late-oogenesis stages produces a mature egg with specific localized factors along its AV axis. These localized factors will define the future anterior-posterior (AP) and dorsal-ventral (DV) axes of the embryo. Furthermore, AV polarity confines germ cell determinants to the vegetal pole, from where they redistribute to the cleavage furrows of the 2- and 4-cell stage embryo, ultimately specifying the primordial germ cells (PGCs). The sperm entry region during fertilization is also defined by the AV axis. In frogs and fish, sperm enters through the animal pole, similar to the mouse where it enters predominantly in the animal half. Thus, AV polarity establishment and RNA localization are involved in all the major events of early embryonic development. In this chapter, we will review the RNA localization mechanisms in vertebrate oocytes that are key to embryonic patterning, referring to some of the groundbreaking studies in frog oocytes and incorporating the current genetic evidence from the zebrafish.


Assuntos
Polaridade Celular/genética , Desenvolvimento Embrionário/genética , Oogênese/genética , RNA/genética , Animais , Fertilização/genética , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Camundongos , Morfogênese/genética , Oócitos/crescimento & desenvolvimento , Xenopus/embriologia , Peixe-Zebra/embriologia
4.
Cancer Cell ; 42(1): 52-69.e7, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065100

RESUMO

Breast cancer mortality results from incurable recurrences thought to be seeded by dormant, therapy-refractory residual tumor cells (RTCs). Understanding the mechanisms enabling RTC survival is therefore essential for improving patient outcomes. Here, we derive a dormancy-associated RTC signature that mirrors the transcriptional response to neoadjuvant therapy in patients and is enriched for extracellular matrix-related pathways. In vivo CRISPR-Cas9 screening of dormancy-associated candidate genes identifies the galactosyltransferase B3GALT6 as a functional regulator of RTC fitness. B3GALT6 is required for glycosaminoglycan (GAG) linkage to proteins to generate proteoglycans, and its germline loss of function in patients causes skeletal dysplasias. We find that B3GALT6-mediated biosynthesis of heparan sulfate GAGs predicts poor patient outcomes and promotes tumor recurrence by enhancing dormant RTC survival in multiple contexts, and does so via a B3GALT6-heparan sulfate/HS6ST1-heparan 6-O-sulfation/FGF1-FGFR2 signaling axis. These findings implicate B3GALT6 in cancer and nominate FGFR2 inhibition as a promising approach to eradicate dormant RTCs and prevent recurrence.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Sobrevivência Celular/genética , Recidiva Local de Neoplasia/genética , Heparitina Sulfato/metabolismo , Glicosaminoglicanos/metabolismo , Galactosiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA