RESUMO
ABSTRACT: Chronic kidney disease (CKD) is a major contributor to morbidity and mortality in sickle cell disease (SCD). Anemia, induced by chronic persistent hemolysis, is associated with the progressive deterioration of renal health, resulting in CKD. Moreover, patients with SCD experience acute kidney injury (AKI), a risk factor for CKD, often during vaso-occlusive crisis associated with acute intravascular hemolysis. However, the mechanisms of hemolysis-driven pathogenesis of the AKI-to-CKD transition in SCD remain elusive. Here, we investigated the role of increased renovascular rarefaction and the resulting substantial loss of the vascular endothelial protein C receptor (EPCR) in the progressive deterioration of renal function in transgenic SCD mice. Multiple hemolytic events raised circulating levels of soluble EPCR (sEPCR), indicating loss of EPCR from the cell surface. Using bone marrow transplantation and super-resolution ultrasound imaging, we demonstrated that SCD mice overexpressing EPCR were protective against heme-induced CKD development. In a cohort of patients with SCD, plasma sEPCR was significantly higher in individuals with CKD than in those without CKD. This study concludes that multiple hemolytic events may trigger CKD in SCD through the gradual loss of renovascular EPCR. Thus, the restoration of EPCR may be a therapeutic target, and plasma sEPCR can be developed as a prognostic marker for sickle CKD.
Assuntos
Anemia Falciforme , Receptor de Proteína C Endotelial , Heme , Camundongos Transgênicos , Insuficiência Renal Crônica , Animais , Anemia Falciforme/complicações , Anemia Falciforme/patologia , Anemia Falciforme/metabolismo , Anemia Falciforme/sangue , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/etiologia , Receptor de Proteína C Endotelial/metabolismo , Receptor de Proteína C Endotelial/genética , Camundongos , Heme/metabolismo , Humanos , Masculino , Feminino , Hemólise , Rim/metabolismo , Rim/patologiaRESUMO
Rebalance of coagulation and anticoagulation to achieve a hemostatic effect has recently gained attention as an alternative therapeutic strategy for hemophilia. We engineered a humanized chimeric antibody, SR604, based on a previously published murine antibody, HAPC1573, which selectively blocks the anticoagulant activity of human activated protein C (APC). SR604 effectively blocked the anticoagulation activities of APC in human plasma deficient in various coagulation factors in vitro with affinities â¼60 times greater than that of HAPC1573. SR604 exhibited prophylactic and therapeutic efficacy in the tail-bleeding and knee-injury models of hemophilia A and B mice expressing human APC (humanized hemophilic mice). SR604 did not interfere with the cytoprotection and endothelial barrier function of APC, nor were there obvious toxicity effects in humanized hemophilic mice. Pharmacokinetic study showed a high bioavailability (106%) of subcutaneously injected SR604 in cynomolgus monkeys. These results demonstrate that SR604 is expected to be a safe and effective therapeutic and/or prophylactic agent with a prolonged half-life for patients with congenital factor deficiencies including hemophilia A and B.
Assuntos
Hemofilia A , Proteína C , Humanos , Camundongos , Animais , Proteína C/uso terapêutico , Hemofilia A/tratamento farmacológico , Modelos Animais de Doenças , Coagulação Sanguínea , Anticoagulantes/uso terapêuticoRESUMO
Recurrent spontaneous or trauma-related bleeding into joints in hemophilia leads to hemophilic arthropathy (HA), a debilitating joint disease. Treatment of HA consists of preventing joint bleeding by clotting factor replacement, and in extreme cases, orthopedic surgery. We recently showed that administration of endothelial cell protein C receptor (EPCR) blocking monoclonal antibodies (mAb) markedly reduced the severity of HA in factor VIII (FVIII)-/- mice. EPCR blocking inhibits activated protein C (APC) generation and EPCR-dependent APC signaling. The present study was aimed to define the role of inhibition of APC anticoagulant activity, APC signaling, or both in suppressing HA. FVIII-/- mice were treated with a single dose of isotype control mAb, MPC1609 mAb, that inhibits anticoagulant, and signaling properties of APC, or MAPC1591 mAb that only blocks the anticoagulant activity of APC. Joint bleeding was induced by needle puncture injury. HA was evaluated by monitoring joint bleeding, change in joint diameter, and histopathological analysis of joint tissue sections for synovial hypertrophy, macrophage infiltration, neoangiogenesis, cartilage degeneration, and chondrocyte apoptosis. No significant differences were observed between MPC1609 and MAPC1591 in inhibiting APC anticoagulant activity in vitro and equally effective in correcting acute bleeding induced by the saphenous vein incision in FVIII-/- mice. Administration of MAPC1591, and not MPC1609, markedly reduced the severity of HA. MAPC1591 inhibited joint bleed-induced inflammatory cytokine interleukin-6 expression and vascular leakage in joints, whereas MPC1609 had no significant effect. Our data show that an mAb that selectively inhibits APC's anticoagulant activity without compromising its cytoprotective signaling offers a therapeutic potential alternative to treat HA.
Assuntos
Artrite , Hemofilia A , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Receptor de Proteína C Endotelial , Hemartrose/tratamento farmacológico , Hemartrose/patologia , Hemartrose/prevenção & controle , Hemofilia A/complicações , Hemofilia A/tratamento farmacológico , Hemorragia , Camundongos , Proteína C/metabolismoRESUMO
Rebalancing the hemostatic system by targeting endogenous anticoagulant pathways, like the protein C (PC) system, is being tested as a means of improving hemostasis in patients with hemophilia. Recent intravital studies of hemostasis demonstrated that, in some vascular contexts, thrombin activity is sequestered in the extravascular compartment. These findings raise important questions about the context-dependent contribution of activated PC (APC) to the hemostatic response, because PC activation occurs on the surface of endothelial cells. We used a combination of pharmacologic, genetic, imaging, and computational approaches to examine the relationships among thrombin spatial distribution, PC activation, and APC anticoagulant function. We found that inhibition of APC activity, in mice either harboring the factor V Leiden mutation or infused with an APC-blocking antibody, significantly enhanced fibrin formation and platelet activation in a microvascular injury model, consistent with the role of APC as an anticoagulant. In contrast, inhibition of APC activity had no effect on hemostasis after penetrating injury of the mouse jugular vein. Computational studies showed that differences in blood velocity, injury size, and vessel geometry determine the localization of thrombin generation and, consequently, the extent of PC activation. Computational predictions were tested in vivo and showed that when thrombin generation occurred intravascularly, without penetration of the vessel wall, inhibition of APC significantly increased fibrin formation in the jugular vein. Together, these studies show the importance of thrombin spatial distribution in determining PC activation during hemostasis and thrombosis.
Assuntos
Hemostáticos , Trombose , Animais , Anticoagulantes/farmacologia , Células Endoteliais/metabolismo , Fibrina/metabolismo , Hemostasia , Humanos , Camundongos , Proteína C/farmacologia , Trombina/metabolismo , Trombose/metabolismoRESUMO
BACKGROUND: APC (activated protein C) is a plasma serine protease with anticoagulant and anti-inflammatory activities. EPCR (Endothelial protein C receptor) is associated with APC's activity and mediates its downstream signaling events. APC exerts cardioprotective effects during ischemia and reperfusion (I/R). This study aims to characterize the role of the APC-EPCR axis in ischemic insults in aging. METHODS: Young (3-4 months) and aged (24-26 months) wild-type C57BL/6J mice, as well as EPCR point mutation (EPCRR84A/R84A) knockin C57BL/6J mice incapable of interaction with APC and its wild type of littermate C57BL/6J mice, were subjected to I/R. Wild-type APC, signaling-selective APC-2Cys, or anticoagulant-selective APC-E170A were administrated before reperfusion. RESULTS: The results demonstrated that cardiac I/R reduces APC activity, and the APC activity was impaired in the aged versus young hearts possibly attributable to the declined EPCR level with aging. Serum EPCR measurement showed that I/R triggered the shedding of membrane EPCR into circulation, while administration of APC attenuated the I/R-induced EPCR shedding in both young and aged hearts. Subsequent echocardiography showed that APC and APC-2Cys but not APC-E170A ameliorated cardiac dysfunction during I/R in both young and aged mice. Importantly, APC elevated the resistance of the aged heart to ischemic insults through stabilizing EPCR. However, all these cardioprotective effects of APC were blunted in the EPCRR84A/R84A mice versus its wild-type littermates. The ex vivo working heart and metabolomics results demonstrated that AMPK (AMP-activated protein kinase) mediates acute adaptive response while AKT (protein kinase B) is involved in chronic metabolic programming in the hearts with APC treatment. CONCLUSIONS: I/R stress causes shedding of the membrane EPCR in the heart, and administration of APC prevents I/R-induced cardiac EPCR shedding that is critical for limiting cardiac damage in aging.
Assuntos
Envelhecimento/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína C/metabolismo , Animais , Cardiotônicos/uso terapêutico , Receptor de Proteína C Endotelial/sangue , Feminino , Coração/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Proteína C/uso terapêuticoRESUMO
Mechanisms thought to regulate activated factor VIII (FVIIIa) cofactor function include A2-domain dissociation and activated protein C (APC) cleavage. Unlike A2-domain dissociation, there is no known phenotype associated with altered APC cleavage of FVIII, and biochemical studies have suggested APC plays a marginal role in FVIIIa regulation. However, the in vivo contribution of FVIIIa inactivation by APC is unexplored. Here we compared wild-type B-domainless FVIII (FVIII-WT) recombinant protein with an APC-resistant FVIII variant (FVIII-R336Q/R562Q; FVIII-QQ). FVIII-QQ demonstrated expected APC resistance without other changes in procoagulant function or A2-domain dissociation. In plasma-based studies, FVIII-WT/FVIIIa-WT demonstrated dose-dependent sensitivity to APC with or without protein S, whereas FVIII-QQ/FVIIIa-QQ did not. Importantly, FVIII-QQ demonstrated approximately fivefold increased procoagulant function relative to FVIII-WT in the tail clip and ferric chloride injury models in hemophilia A (HA) mice. To minimize the contribution of FV inactivation by APC in vivo, a tail clip assay was performed in homozygous HA/FV Leiden (FVL) mice infused with FVIII-QQ or FVIII-WT in the presence or absence of monoclonal antibody 1609, an antibody that blocks murine PC/APC hemostatic function. FVIII-QQ again demonstrated enhanced hemostatic function in HA/FVL mice; however, FVIII-QQ and FVIII-WT performed analogously in the presence of the PC/APC inhibitory antibody, indicating the increased hemostatic effect of FVIII-QQ was APC specific. Our data demonstrate APC contributes to the in vivo regulation of FVIIIa, which has the potential to be exploited to develop novel HA therapeutics.
Assuntos
Fator VIII/metabolismo , Hemofilia A/patologia , Hemostasia , Proteína C/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Cloretos/toxicidade , Fator VIII/genética , Feminino , Compostos Férricos/toxicidade , Hemofilia A/induzido quimicamente , Hemofilia A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína C/genética , Proteínas Recombinantes/genéticaRESUMO
Recombinant factor FVIIa (rFVIIa) is used as a hemostatic agent to treat bleeding disorders in hemophilia patients with inhibitors and other groups of patients. Our recent studies showed that FVIIa binds endothelial cell protein C receptor (EPCR) and induces protease-activated receptor 1 (PAR1)-mediated biased signaling. The importance of FVIIa-EPCR-PAR1-mediated signaling in hemostasis is unknown. In the present study, we show that FVIIa induces the release of extracellular vesicles (EVs) from endothelial cells both in vitro and in vivo. Silencing of EPCR or PAR1 in endothelial cells blocked the FVIIa-induced generation of EVs. Consistent with these data, FVIIa treatment enhanced the release of EVs from murine brain endothelial cells isolated from wild-type (WT), EPCR-overexpressing, and PAR1-R46Q-mutant mice, but not EPCR-deficient or PAR1-R41Q-mutant mice. In vivo studies revealed that administration of FVIIa to WT, EPCR-overexpressing, and PAR1-R46Q-mutant mice, but not EPCR-deficient or PAR1-R41Q-mutant mice, increased the number of circulating EVs. EVs released in response to FVIIa treatment exhibit enhanced procoagulant activity. Infusion of FVIIa-generated EVs and not control EVs to platelet-depleted mice increased thrombin generation at the site of injury and reduced blood loss. Administration of FVIIa-generated EVs or generation of EVs endogenously by administering FVIIa augmented the hemostatic effect of FVIIa. Overall, our data reveal that FVIIa treatment, through FVIIa-EPCR-PAR1 signaling, releases EVs from the endothelium into the circulation, and these EVs contribute to the hemostatic effect of FVIIa.
Assuntos
Endotélio Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Fator VIIa/farmacologia , Hemostasia/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptor PAR-1/metabolismo , Substituição de Aminoácidos , Animais , Vesículas Extracelulares/genética , Hemostasia/genética , Humanos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Receptor PAR-1/genética , Proteínas Recombinantes/farmacologiaRESUMO
RATIONALE: While thrombin is the key protease in thrombus formation, other coagulation proteases, such as fXa (factor Xa) or aPC (activated protein C), independently modulate intracellular signaling via partially distinct receptors. OBJECTIVES: To study the differential effects of fXa or fIIa (factor IIa) inhibition on gene expression and inflammation in myocardial ischemia-reperfusion injury. METHODS AND RESULTS: Mice were treated with a direct fIIa inhibitor (fIIai) or direct fXa inhibitor (fXai) at doses that induced comparable anticoagulant effects ex vivo and in vivo (tail-bleeding assay and FeCl3-induced thrombosis). Myocardial ischemia-reperfusion injury was induced via left anterior descending ligation. We determined infarct size and in vivo aPC generation, analyzed gene expression by RNA sequencing, and performed immunoblotting and ELISA. The signaling-only 3K3A-aPC variant and inhibitory antibodies that blocked all or only the anticoagulant function of aPC were used to determine the role of aPC. Doses of fIIai and fXai that induced comparable anticoagulant effects resulted in a comparable reduction in infarct size. However, unbiased gene expression analyses revealed marked differences, including pathways related to sterile inflammation and inflammasome regulation. fXai but not fIIai inhibited sterile inflammation by reducing the expression of proinflammatory cytokines (IL [interleukin]-1ß, IL-6, and TNFα [tumor necrosis factor alpha]), as well as NF-κB (nuclear factor kappa B) and inflammasome activation. This anti-inflammatory effect was associated with reduced myocardial fibrosis 28 days post-myocardial ischemia-reperfusion injury. Mechanistically, in vivo aPC generation was higher with fXai than with fIIai. Inhibition of the anticoagulant and signaling properties of aPC abolished the anti-inflammatory effect associated with fXai, while inhibiting only the anticoagulant function of aPC had no effect. Combining 3K3A-aPC with fIIai reduced the inflammatory response, mimicking the fXai-associated effect. CONCLUSIONS: We showed that specific inhibition of coagulation via direct oral anticoagulants had differential effects on gene expression and inflammation, despite comparable anticoagulant effects and infarct sizes. Targeting individual coagulation proteases induces specific cellular responses unrelated to their anticoagulant effect.
Assuntos
Anti-Inflamatórios/uso terapêutico , Inibidores do Fator Xa/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteína C/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Inibidores do Fator Xa/farmacologia , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteína C/farmacologiaRESUMO
Thrombomodulin is important for the production of activated protein C (APC), a molecule with significant regulatory roles in coagulation and inflammation. To address known molecular incompatibilities between pig thrombomodulin and human thrombin that affect the conversion of protein C into APC, GalTKO.hCD46 pigs have been genetically modified to express human thrombomodulin (hTBM). The aim of this study was to evaluate the impact of transgenic hTBM expression on the coagulation dysregulation that is observed in association with lung xenograft injury in an established lung perfusion model, with and without additional blockade of nonphysiologic interactions between pig vWF and human GPIb axis. Expression of hTBM was variable between pigs at the transcriptional and protein level. hTBM increased the activation of human protein C and inhibited thrombosis in an in vitro flow perfusion assay, confirming that the expressed protein was functional. Decreased platelet activation was observed during ex vivo perfusion of GalTKO.hCD46 lungs expressing hTBM and, in conjunction with transgenic hTBM, blockade of the platelet GPIb receptor further inhibited platelets and increased survival time. Altogether, our data indicate that expression of transgenic hTBM partially addresses coagulation pathway dysregulation associated with pig lung xenograft injury and, in combination with vWF-GP1b-directed strategies, is a promising approach to improve the outcomes of lung xenotransplantation.
Assuntos
Proteína C , Fator de von Willebrand , Animais , Suínos , Humanos , Transplante Heterólogo , Proteína C/metabolismo , Fator de von Willebrand/metabolismo , Células Endoteliais/metabolismo , Trombomodulina/genética , Animais Geneticamente Modificados/metabolismo , Pulmão/metabolismo , PerfusãoRESUMO
We recently showed that clotting factor VIIa (FVIIa) binding to endothelial cell protein C receptor (EPCR) induces anti-inflammatory signaling and protects vascular barrier integrity. Inflammation and vascular permeability are thought to be major contributors to the development of hemophilic arthropathy following hemarthrosis. The present study was designed to investigate the potential influence of FVIIa interaction with EPCR in the pathogenesis of hemophilic arthropathy and its treatment with recombinant FVIIa (rFVIIa). For this, we first generated hemophilia A (FVIII-/-) mice lacking EPCR (EPCR-/-FVIII-/-) or overexpressing EPCR (EPCR++ FVIII-/-). Joint bleeding was induced in FVIII-/-, EPCR-/-FVIII-/-, and EPCR++FVIII-/- mice by needle puncture injury. Hemophilic synovitis was evaluated by monitoring joint bleeding, change in joint diameter, and histopathological analysis of joint tissue sections. EPCR deficiency in FVIII-/- mice significantly reduced the severity of hemophilic synovitis. EPCR deficiency attenuated the elaboration of interleukin-6, infiltration of macrophages, and neoangiogenesis in the synovium following hemarthrosis. A single dose of rFVIIa was sufficient to fully prevent the development of milder hemophilic synovitis in EPCR-/-FVIII-/- mice. The development of hemophilic arthropathy in EPCR-overexpressing FVIII-/- mice did not significantly differ from that of FVIII-/- mice, and 3 doses of rFVIIa partly protected against hemophilic synovitis in these mice. Consistent with the data that EPCR deficiency protects against developing hemophilic arthropathy, administration of a single dose of EPCR-blocking monoclonal antibodies markedly reduced hemophilic synovitis in FVIII-/- mice subjected to joint bleeding. The present data indicate that EPCR could be an attractive new target to prevent joint damage in hemophilia patients.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Receptor de Proteína C Endotelial/deficiência , Hemartrose/prevenção & controle , Hemofilia A/complicações , Animais , Anticorpos Monoclonais/farmacologia , Citocinas/fisiologia , Receptor de Proteína C Endotelial/antagonistas & inibidores , Receptor de Proteína C Endotelial/imunologia , Receptor de Proteína C Endotelial/fisiologia , Fator VIIa/uso terapêutico , Hemartrose/tratamento farmacológico , Hemartrose/etiologia , Hemartrose/fisiopatologia , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Camundongos , Camundongos Knockout , Punções/efeitos adversos , Ratos , Proteínas Recombinantes/uso terapêutico , Sinovite/etiologia , Sinovite/prevenção & controleRESUMO
Streptococcus pneumoniae is the leading cause of hospital community-acquired pneumonia. Patients with pneumococcal pneumonia may develop complicated parapneumonic effusions or empyema that can lead to pleural organization and subsequent fibrosis. The pathogenesis of pleural organization and scarification involves complex interactions between the components of the immune system, coagulation, and fibrinolysis. EPCR (endothelial protein C receptor) is a critical component of the protein C anticoagulant pathway. The present study was performed to evaluate the role of EPCR in the pathogenesis of S. pneumoniae infection-induced pleural thickening and fibrosis. Our studies show that the pleural mesothelium expresses EPCR. Intrapleural instillation of S. pneumoniae impairs lung compliance and lung volume in wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. Intrapleural S. pneumoniae infection induces pleural thickening in wild-type mice. Pleural thickening is more pronounced in EPCR-overexpressing mice, whereas it is reduced in EPCR-deficient mice. Markers of mesomesenchymal transition are increased in the visceral pleura of S. pneumoniae-infected wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. The lungs of wild-type and EPCR-overexpressing mice administered intrapleural S. pneumoniae showed increased infiltration of macrophages and neutrophils, which was significantly reduced in EPCR-deficient mice. An analysis of bacterial burden in the pleural lavage, the lungs, and blood revealed a significantly lower bacterial burden in EPCR-deficient mice compared with wild-type and EPCR-overexpressing mice. Overall, our data provide strong evidence that EPCR deficiency protects against S. pneumoniae infection-induced impairment of lung function and pleural remodeling.
Assuntos
Receptor de Proteína C Endotelial/deficiência , Pulmão/metabolismo , Pleura/metabolismo , Derrame Pleural/metabolismo , Pleurisia/metabolismo , Pneumonia Pneumocócica/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Carga Bacteriana , Células Cultivadas , Modelos Animais de Doenças , Receptor de Proteína C Endotelial/genética , Feminino , Fibrose , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Pleura/microbiologia , Pleura/patologia , Derrame Pleural/microbiologia , Derrame Pleural/patologia , Derrame Pleural/fisiopatologia , Pleurisia/microbiologia , Pleurisia/patologia , Pleurisia/fisiopatologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Pneumonia Pneumocócica/fisiopatologiaRESUMO
Cerebral cavernous malformations (CCMs) are common brain vascular dysplasias that are prone to acute and chronic hemorrhage with significant clinical sequelae. The pathogenesis of recurrent bleeding in CCM is incompletely understood. Here, we show that central nervous system hemorrhage in CCMs is associated with locally elevated expression of the anticoagulant endothelial receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR). TM levels are increased in human CCM lesions, as well as in the plasma of patients with CCMs. In mice, endothelial-specific genetic inactivation of Krit1 (Krit1 ECKO ) or Pdcd10 (Pdcd10 ECKO ), which cause CCM formation, results in increased levels of vascular TM and EPCR, as well as in enhanced generation of activated protein C (APC) on endothelial cells. Increased TM expression is due to upregulation of transcription factors KLF2 and KLF4 consequent to the loss of KRIT1 or PDCD10. Increased TM expression contributes to CCM hemorrhage, because genetic inactivation of 1 or 2 copies of the Thbd gene decreases brain hemorrhage in Pdcd10 ECKO mice. Moreover, administration of blocking antibodies against TM and EPCR significantly reduced CCM hemorrhage in Pdcd10 ECKO mice. Thus, a local increase in the endothelial cofactors that generate anticoagulant APC can contribute to bleeding in CCMs, and plasma soluble TM may represent a biomarker for hemorrhagic risk in CCMs.
Assuntos
Anticoagulantes/metabolismo , Proteínas Reguladoras de Apoptose/fisiologia , Hemorragia Cerebral/diagnóstico , Endotélio Vascular/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Proteína KRIT1/fisiologia , Proteínas de Membrana/fisiologia , Proteína C/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Trombomodulina/sangue , Adulto , Animais , Coagulação Sanguínea , Estudos de Casos e Controles , Hemorragia Cerebral/sangue , Hemorragia Cerebral/etiologia , Receptor de Proteína C Endotelial/metabolismo , Endotélio Vascular/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/fisiopatologia , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Knockout , Transdução de Sinais , Adulto JovemRESUMO
BACKGROUND: Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS: A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS: The zymogen protein C and aPC bind to podocyte integrin-ß3, a subunit of integrin-αvß3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-αvß3 induces transient binding of integrin-ß3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-ß3via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-ß3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-ß3 interaction by specifically deleting podocyte integrin-ß3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-αvß3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-αvß3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.
Assuntos
Nefropatias Diabéticas/prevenção & controle , Integrina beta3/fisiologia , Podócitos/fisiologia , Proteína C/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Citoproteção , Receptor de Proteína C Endotelial/fisiologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-1/fisiologiaRESUMO
Recent studies show that endothelial cell protein C receptor (EPCR) interacts with diverse ligands, in addition to its known ligands protein C and activated protein C (APC). We showed in earlier studies that procoagulant clotting factor VIIa (FVIIa) binds EPCR and downregulates EPCR-mediated anticoagulation and induces an endothelial barrier protective effect. Here, we investigated the effect of FVIIa's interaction with EPCR on endothelial cell inflammation and lipopolysaccharide (LPS)-induced inflammatory responses in vivo. Treatment of endothelial cells with FVIIa suppressed tumor necrosis factor α (TNF-α)- and LPS-induced expression of cellular adhesion molecules and adherence of monocytes to endothelial cells. Inhibition of EPCR or protease-activated receptor 1 (PAR1) by either specific antibodies or small interfering RNA abolished the FVIIa-induced suppression of TNF-α- and LPS-induced expression of cellular adhesion molecules and interleukin-6. ß-Arrestin-1 silencing blocked the FVIIa-induced anti-inflammatory effect in endothelial cells. In vivo studies showed that FVIIa treatment markedly suppressed LPS-induced inflammatory cytokines and infiltration of innate immune cells into the lung in wild-type and EPCR-overexpressing mice, but not in EPCR-deficient mice. Mechanistic studies revealed that FVIIa treatment inhibited TNF-α-induced ERK1/2, p38 MAPK, JNK, NF-κB, and C-Jun activation indicating that FVIIa-mediated signaling blocks an upstream signaling event in TNFα-induced signaling cascade. FVIIa treatment impaired the recruitment of TNF-receptor-associated factor 2 into the TNF receptor 1 signaling complex. Overall, our present data provide convincing evidence that FVIIa binding to EPCR elicits anti-inflammatory signaling via a PAR1- and ß-arrestin-1 dependent pathway. The present study suggests new therapeutic potentials for FVIIa, which is currently in clinical use for treating bleeding disorders.
Assuntos
Receptor de Proteína C Endotelial/metabolismo , Fator VIIa/metabolismo , Inflamação/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Receptor de Proteína C Endotelial/genética , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Camundongos , Receptor PAR-1/genética , Fator de Necrose Tumoral alfa/metabolismo , beta-Arrestinas/metabolismoRESUMO
Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects. Here, we examined the role of extracellular histones in lung pathogenesis during influenza. Mice infected with influenza virus displayed high accumulation of extracellular histones, with widespread pulmonary microvascular thrombosis. Occluded pulmonary blood vessels with vascular thrombi often exhibited endothelial necrosis surrounded by hemorrhagic effusions and pulmonary edema. Histones released during influenza induced cytotoxicity and showed strong binding to platelets within thrombi in infected mouse lungs. Nasal wash samples from influenza-infected patients also showed increased accumulation of extracellular histones, suggesting a possible clinical relevance of elevated histones in pulmonary injury. Although histones inhibited influenza growth in vitro, in vivo treatment with histones did not yield antiviral effects and instead exacerbated lung pathology. Blocking with antihistone antibodies caused a marked decrease in lung pathology in lethal influenza-challenged mice and improved protection when administered in combination with the antiviral agent oseltamivir. These findings support the pathogenic effects of extracellular histones in that pulmonary injury during influenza was exacerbated. Targeting histones provides a novel therapeutic approach to influenza pneumonia.
Assuntos
Histonas/metabolismo , Pulmão/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Pneumonia/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Camundongos , Infecções por Orthomyxoviridae/patologia , Pneumonia/patologia , Trombose/metabolismo , Trombose/patologiaRESUMO
Neutrophil extracellular traps (NETs; webs of DNA coated in antimicrobial proteins) are released into the vasculature during sepsis where they contribute to host defense, but also cause tissue damage and organ dysfunction. Various components of NETs have also been implicated as activators of coagulation. Using multicolor confocal intravital microscopy in mouse models of sepsis, we observed profound platelet aggregation, thrombin activation, and fibrin clot formation within (and downstream of) NETs in vivo. NETs were critical for the development of sepsis-induced intravascular coagulation regardless of the inciting bacterial stimulus (gram-negative, gram-positive, or bacterial products). Removal of NETs via DNase infusion, or in peptidylarginine deiminase-4-deficient mice (which have impaired NET production), resulted in significantly lower quantities of intravascular thrombin activity, reduced platelet aggregation, and improved microvascular perfusion. NET-induced intravascular coagulation was dependent on a collaborative interaction between histone H4 in NETs, platelets, and the release of inorganic polyphosphate. Real-time perfusion imaging revealed markedly improved microvascular perfusion in response to the blockade of NET-induced coagulation, which correlated with reduced markers of systemic intravascular coagulation and end-organ damage in septic mice. Together, these data demonstrate, for the first time in an in vivo model of infection, a dynamic NET-platelet-thrombin axis that promotes intravascular coagulation and microvascular dysfunction in sepsis.
Assuntos
Coagulação Intravascular Disseminada/imunologia , Armadilhas Extracelulares/imunologia , Sepse/imunologia , Animais , Plaquetas/imunologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microscopia ConfocalRESUMO
Coagulation proteases have increasingly recognized functions beyond hemostasis and thrombosis. Disruption of activated protein C (aPC) or insulin signaling impair function of podocytes and ultimately cause dysfunction of the glomerular filtration barrier and diabetic kidney disease (DKD). We here show that insulin and aPC converge on a common spliced-X-box binding protein-1 (sXBP1) signaling pathway to maintain endoplasmic reticulum (ER) homeostasis. Analogous to insulin, physiological levels of aPC maintain ER proteostasis in DKD. Accordingly, genetically impaired protein C activation exacerbates maladaptive ER response, whereas genetic or pharmacological restoration of aPC maintains ER proteostasis in DKD models. Importantly, in mice with podocyte-specific deficiency of insulin receptor (INSR), aPC selectively restores the activity of the cytoprotective ER-transcription factor sXBP1 by temporally targeting INSR downstream signaling intermediates, the regulatory subunits of PI3Kinase, p85α and p85ß. Genome-wide mapping of condition-specific XBP1-transcriptional regulatory patterns confirmed that concordant unfolded protein response target genes are involved in maintenance of ER proteostasis by both insulin and aPC. Thus, aPC efficiently employs disengaged insulin signaling components to reconfigure ER signaling and restore proteostasis. These results identify ER reprogramming as a novel hormonelike function of coagulation proteases and demonstrate that targeting insulin signaling intermediates may be a feasible therapeutic approach ameliorating defective insulin signaling.
Assuntos
Coagulação Sanguínea , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Insulina/metabolismo , Peptídeo Hidrolases/metabolismo , Proteína C/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Nefropatias Diabéticas/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Trombomodulina/metabolismo , Resposta a Proteínas não Dobradas/genéticaRESUMO
Cytoprotection by activated protein C (aPC) after ischemia-reperfusion injury (IRI) is associated with apoptosis inhibition. However, IRI is hallmarked by inflammation, and hence, cell-death forms disjunct from immunologically silent apoptosis are, in theory, more likely to be relevant. Because pyroptosis (ie, cell death resulting from inflammasome activation) is typically observed in IRI, we speculated that aPC ameliorates IRI by inhibiting inflammasome activation. Here we analyzed the impact of aPC on inflammasome activity in myocardial and renal IRIs. aPC treatment before or after myocardial IRI reduced infarct size and Nlrp3 inflammasome activation in mice. Kinetic in vivo analyses revealed that Nlrp3 inflammasome activation preceded myocardial injury and apoptosis, corroborating a pathogenic role of the Nlrp3 inflammasome. The constitutively active Nlrp3A350V mutation abolished the protective effect of aPC, demonstrating that Nlrp3 suppression is required for aPC-mediated protection from IRI. In vitro aPC inhibited inflammasome activation in macrophages, cardiomyocytes, and cardiac fibroblasts via proteinase-activated receptor 1 (PAR-1) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Accordingly, inhibiting PAR-1 signaling, but not the anticoagulant properties of aPC, abolished the ability of aPC to restrict Nlrp3 inflammasome activity and tissue damage in myocardial IRI. Targeting biased PAR-1 signaling via parmodulin-2 restricted mTORC1 and Nlrp3 inflammasome activation and limited myocardial IRI as efficiently as aPC. The relevance of aPC-mediated Nlrp3 inflammasome suppression after IRI was corroborated in renal IRI, where the tissue protective effect of aPC was likewise dependent on Nlrp3 inflammasome suppression. These studies reveal that aPC protects from IRI by restricting mTORC1-dependent inflammasome activation and that mimicking biased aPC PAR-1 signaling using parmodulins may be a feasible therapeutic approach to combat IRI.
Assuntos
Inflamassomos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína C/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Animais Recém-Nascidos , Anticoagulantes/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Immunoblotting , Inflamassomos/metabolismo , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Substâncias Protetoras/farmacologia , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Traumatismo por Reperfusão/metabolismoRESUMO
Importance: Previous research suggested that soluble human recombinant thrombomodulin may reduce mortality among patients with sepsis-associated coagulopathy. Objective: To determine the effect of human recombinant thrombomodulin vs placebo on 28-day all-cause mortality among patients with sepsis-associated coagulopathy. Design, Setting, and Participants: The SCARLET trial was a randomized, double-blind, placebo-controlled, multinational, multicenter phase 3 study conducted in intensive care units at 159 sites in 26 countries. All adult patients admitted to one of the participating intensive care units between October 2012 and March 2018 with sepsis-associated coagulopathy and concomitant cardiovascular and/or respiratory failure, defined as an international normalized ratio greater than 1.40 without other known etiology and a platelet count in the range of 30 to 150 × 109/L or a greater than 30% decrease in platelet count within 24 hours, were considered for inclusion. The final date of follow-up was February 28, 2019. Interventions: Patients with sepsis-associated coagulopathy were randomized and treated with an intravenous bolus or a 15-minute infusion of thrombomodulin (0.06 mg/kg/d [maximum, 6 mg/d]; n = 395) or matching placebo (n = 405) once daily for 6 days. Main Outcome and Measures: The primary end point was 28-day all-cause mortality. Results: Among 816 randomized patients, 800 (mean age, 60.7 years; 437 [54.6%] men) completed the study and were included in the full analysis set. In these patients, the 28-day all-cause mortality rate was not statistically significantly different between the thrombomodulin group and the placebo group (106 of 395 patients [26.8%] vs 119 of 405 patients [29.4%], respectively; P = .32). The absolute risk difference was 2.55% (95% CI, -3.68% to 8.77%). The incidence of serious major bleeding adverse events (defined as any intracranial hemorrhage; life-threatening bleeding; or bleeding event classified as serious by the investigator, with administration of at least 1440 mL [typically 6 units] of packed red blood cells over 2 consecutive days) was 23 of 396 patients (5.8%) in the thrombomodulin group and 16 of 404 (4.0%) in the placebo group. Conclusions and Relevance: Among patients with sepsis-associated coagulopathy, administration of a human recombinant thrombomodulin, compared with placebo, did not significantly reduce 28-day all-cause mortality. Trial Registration: ClinicalTrials.gov Identifier: NCT01598831.
Assuntos
Anticoagulantes/uso terapêutico , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Sepse/complicações , Trombomodulina/uso terapêutico , Idoso , Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/mortalidade , Causas de Morte , Feminino , Humanos , Infusões Intravenosas , Injeções Intravenosas , Coeficiente Internacional Normatizado , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/uso terapêutico , Falha de TratamentoRESUMO
Thrombin-mediated proteolysis is central to hemostatic function but also plays a prominent role in multiple disease processes. The proteolytic conversion of fII to α-thrombin (fIIa) by the prothrombinase complex occurs through 2 parallel pathways: (1) the inactive intermediate, prethrombin; or (2) the proteolytically active intermediate, meizothrombin (fIIa(MZ)). FIIa(MZ) has distinct catalytic properties relative to fIIa, including diminished fibrinogen cleavage and increased protein C activation. Thus, fII activation may differentially influence hemostasis and disease depending on the pathway of activation. To determine the in vivo physiologic and pathologic consequences of restricting thrombin generation to fIIa(MZ), mutations were introduced into the endogenous fII gene, resulting in expression of prothrombin carrying 3 amino acid substitutions (R157A, R268A, and K281A) to limit activation events to yield only fIIa(MZ) Homozygous fII(MZ) mice are viable, express fII levels comparable with fII(WT) mice, and have reproductive success. Although in vitro studies revealed delayed generation of fIIa(MZ) enzyme activity, platelet aggregation by fII(MZ) is similar to fII(WT) Consistent with prior analyses of human fIIa(MZ), significant prolongation of clotting times was observed for fII(MZ) plasma. Adult fII(MZ) animals displayed significantly compromised hemostasis in tail bleeding assays, but did not demonstrate overt bleeding. More notably, fII(MZ) mice had 2 significant phenotypic advantages over fII(WT) animals: protection from occlusive thrombosis after arterial injury and markedly diminished metastatic potential in a setting of experimental tumor metastasis to the lung. Thus, these novel animals will provide a valuable tool to assess the role of both fIIa and fIIa(MZ) in vivo.