Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Foods ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203239

RESUMO

Alicyclobacillus acidoterrestris is a spoilage microorganism responsible for relevant product and economic losses in the beverage and juice industry. Spores of this microorganism can survive industrial heat treatments and cause spoilage during posterior storage. Therefore, an effective design of processing treatments requires an accurate understanding of the heat resistance of this microorganism. Considering that industrial treatments are dynamic; this understanding must include how the heat resistance of the microorganism is affected by the heating rate during the heating and cooling phases. The main objective of this study was to establish the effect of heating rates and complex thermal treatments on the inactivation kinetics of A. acidoterrestris. Isothermal experiments between 90 and 105 °C were carried out in a Mastia thermoresistometer, as well as four different dynamic treatments. Although most of the inactivation takes place during the holding phase, our results indicate the relevance of the heating phase for the effectiveness of the treatment. The thermal resistance of A. acidoterrestris is affected by the heating rate during the heating phase. Specifically, higher heating rates resulted in an increased microbial inactivation with respect to the one predicted based on isothermal experiments. These results provide novel information regarding the heat response of this microorganism, which can be valuable for the design of effective heat treatments to improve product safety and stability. Moreover, it highlights the need to incorporate experimental data based on dynamic treatments in process design, as heating rates can have a very significant effect on the thermal resistance of microorganisms.

2.
Food Res Int ; 137: 109640, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233219

RESUMO

Microwave processing can be a valid alternative to conventional heating for different types of products. It enables a more efficient heat transfer in the food matrix, resulting in higher quality products. However, for many food products a uniform temperature distribution is not possible because of heterogeneities in their physical properties and non-uniformtiy in the electric field pattern. Hence, the effectiveness of microwave inactivation treatments is influenced by both intrinsic (differences between cells) and extrinsic variability (non-uniform temperature). Interpreting the results of the process and considering its impact on microbial inactivation is essential to ensure effective and efficient processing. In this work, we quantified the variability in microbial inactivation attained in a microwave pasteurization treatment with a tunnel configuration at pilot-plant scale. The configuration of the equipment makes it impossible to measure the product temperature during treatment. For that reason, variability in microbial counts was measured using Biological Inactivation Indicators (BIIs) based on spherical particles of alginate inoculated with spores of Bacillus spp. The stability of the BIIs and the uncertainty associated to them was assessed using preliminary experiments in a thermoresistometer. Then, they were introduced in the food product to analyse the microbial inactivation in different points of the products during the microwave treatment. Experiments were made in a vegetable soup and a fish-based animal by-product (F-BP). The results show that the variation in the microbial counts was higher than expected based on the biological variability estimated in the thermoresistometer and the uncertainty of the BIIs. This is due to heterogeneities in the temperature field (measured using a thermographic camera), which were higher in the F-BP than in the vegetable soup. Therefore, for the process studied, extrinsic variability was more relevant than intrinsic variability. The methodology presented in this work can be a valid method to evaluate pasteurization treatments of foods processed by heating, providing valuable information of the microbial inactivation achieved. It can contribute to design microwave processes for different types of products and for product optimization.


Assuntos
Bacillus cereus , Calefação , Animais , Biomarcadores Ambientais , Micro-Ondas , Esporos Bacterianos
3.
Food Res Int ; 119: 76-83, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30884713

RESUMO

The estimation of the concentration of microorganisms in a sample is crucial for food microbiology. For instance, it is essential for prevalence studies, challenge tests (growth and/or inactivation studies) or microbial risk assessment. The application of serial dilutions followed by viable counts in Petri dishes is probably the most extended experimental methodology for this purpose. However, this enumeration technique is also a source of uncertainty. In this article, the uncertainty of the serial dilution and viable count methodology related to the sampling error is analyzed, as well as the approximation of the microbial concentration by the number of colonies in a Petri dish. We analyze from a theoretical point of view (statistical analysis) the application of the binomial and Poisson models, demonstrating that the Poisson distribution increases the variance when used to model individual serial dilutions. On the other hand, the binomial model produces unbiased results. Therefore, the Poisson distribution is only applicable when it is a good approximation of the binomial distribution, so the use of the latter is recommended. The relevance of this uncertainty is demonstrated by Monte Carlo simulations of a generic microbial inactivation experiment, where the only source of uncertainty/variability considered is the one generated by serial plating and viable cell enumeration. Due to both the uncertainty of the methodology and the omission of zero-count plates because of the log-transformation, the simulated survival curve can have a tail. Therefore, this phenomenon, which is usually attributed to biological variability, can be to some extent an artefact of the experimental design and/or methodology.


Assuntos
Contagem de Colônia Microbiana , Viabilidade Microbiana , Microbiologia de Alimentos , Modelos Estatísticos , Método de Monte Carlo , Distribuição de Poisson , Medição de Risco , Incerteza
4.
Food Res Int ; 126: 108714, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732079

RESUMO

Kinetic models are nowadays a basic tool to ensure food safety. Most models used in predictive microbiology have model parameters, whose precision is crucial to provide meaningful predictions. Kinetic parameters are usually estimated based on experimental data, where the experimental design can have a great impact on the precision of the estimates. In this sense, Optimal Experiment Design (OED) applies tools from optimization and information theory to identify the most informative experiment under a set of constrains (e.g. mathematical model, number of samples, etc). In this work, we develop a methodology for the design of optimal isothermal inactivation experiments. We consider the two dimensions of the design space (time and temperature), as well as a temperature-dependent maximum duration of the experiment. Functions for its application have been included in the bioOED R package. We identify design patterns that remain optimum regardless of the number of sampling points for three inactivation models (Bigelow, Mafart and Peleg) and three model microorganisms (Escherichia coli, Salmonella Senftenberg and Bacillus coagulans). Samples at extreme temperatures and close to the maximum duration of the experiment are the most informative. Moreover, the Mafart and Peleg models require some samples at intermediate time points due to the non-linearity of the survivor curve. The impact of the reference temperature on the precision of the parameter estimates is also analysed. Based on numerical simulations we recommend fixing it to the mean of the maximum and minimum temperatures used for the experiments. The article ends with a discussion presenting guidelines for the design of isothermal inactivation experiments. They combine these optimum results based on information theory with several practical limitations related to isothermal inactivation experiments. The application of these guidelines would reduce the experimental burden required to characterize thermal inactivation.


Assuntos
Microbiologia de Alimentos/métodos , Temperatura Alta , Modelos Estatísticos , Algoritmos , Bactérias/efeitos da radiação , Simulação por Computador , Cinética , Viabilidade Microbiana , Projetos de Pesquisa
5.
PLoS One ; 14(8): e0220683, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31454353

RESUMO

The mathematical models used in predictive microbiology contain parameters that must be estimated based on experimental data. Due to experimental uncertainty and variability, they cannot be known exactly and must be reported with a measure of uncertainty (usually a standard deviation). In order to increase precision (i.e. reduce the standard deviation), it is usual to add extra sampling points. However, recent studies have shown that precision can also be increased without adding extra sampling points by using Optimal Experiment Design, which applies optimization and information theory to identify the most informative experiment under a set of constraints. Nevertheless, to date, there has been scarce contributions to know a priori whether an experimental design is likely to provide the desired precision in the parameter estimates. In this article, two complementary methodologies to predict the parameter precision for a given experimental design are proposed. Both approaches are based on in silico simulations, so they can be performed before any experimental work. The first one applies Monte Carlo simulations to estimate the standard deviation of the model parameters, whereas the second one applies the properties of the Fisher Information Matrix to estimate the volume of the confidence ellipsoids. The application of these methods to a case study of dynamic microbial inactivation, showing how they can be used to compare experimental designs and assess their precision, is illustrated. The results show that, as expected, the optimal experimental design is more accurate than the uniform design with the same number of data points. Furthermore, it is demonstrated that, for some heating profiles, the uniform design does not ensure that a higher number of sampling points increases precision. Therefore, optimal experimental designs are highly recommended in predictive microbiology.


Assuntos
Simulação por Computador , Microbiologia de Alimentos , Listeria monocytogenes/citologia , Viabilidade Microbiana , Modelos Biológicos , Método de Monte Carlo
6.
Int J Food Microbiol ; 266: 133-141, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29216553

RESUMO

This contribution presents a mathematical model to describe non-isothermal microbial inactivation processes taking into account the acclimation of the microbial cell to thermal stress. The model extends the log-linear inactivation model including a variable and model parameters quantifying the induced thermal resistance. The model has been tested on cells of Escherichia coli against two families of non-isothermal profiles with different constant heating rates. One of the families was composed of monophasic profiles, consisting of a non-isothermal heating stage from 35 to 70°C; the other family was composed of biphasic profiles, consisting of a non-isothermal heating stage followed by a holding period at constant temperature of 57.5°C. Lower heating rates resulted in a higher thermal resistance of the bacterial population. This was reflected in a higher D-value. The parameter estimation was performed in two steps. Firstly, the D and z-values were estimated from the isothermal experiments. Next, the parameters describing the acclimation were estimated using one of the biphasic profiles. This set of parameters was able to describe the remaining experimental data. Finally, a methodology for the construction of diagrams illustrating the magnitude of the induced thermal resistance is presented. The methodology has been illustrated by building it for a biphasic temperature profile with a linear heating phase and a holding phase. This diagram provides a visualization of how the shape of the temperature profile (heating rate and holding temperature) affects the acclimation of the cell to the thermal stress. This diagram can be used for the design of inactivation treatments by industry taking into account the acclimation of the cell to the thermal stress.


Assuntos
Microbiologia de Alimentos , Modelos Biológicos , Estresse Fisiológico , Temperatura , Aclimatação/fisiologia , Fenômenos Fisiológicos Bacterianos , Contagem de Colônia Microbiana , Escherichia coli , Cinética , Viabilidade Microbiana
7.
Front Microbiol ; 7: 1256, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563300

RESUMO

Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA