Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202402586, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683630

RESUMO

Reactivity of (triphosphine)MoIV-nitrido complex generated by N2 splitting, toward boranes is reported. The simple adduct Mo≡N→BH3 is observed with BH3.SMe2 while 1,2 addition is evidenced with 9-BBN leading to H-Mo=NBR2. A second addition of BH3.SMe2 is facile and forms an unprecedented complex featuring two bridging H between two B and the Mo centers. Addition of PMe3 or BH3.SMe2 promotes reductive elimination and N-H bond formation. The full sequence of functionalization at Mo≡N obtained after N2 splitting is therefore evidenced in this work.

2.
Inorg Chem ; 62(15): 5961-5971, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010818

RESUMO

The divergent reactivity of the cationic iridium complex [(η5-C5Me5)IrCl(PMe2ArDipp2)]+ (ArDipp2 = C6H3-2,6-(C6H3-2,6-iPr2)2) toward organolithium and Grignard reagents is described. The noninnocent behavior of the Cp* ligand, a robust spectator in the majority of stoichiometric and catalytic reactions, was manifested by its unforeseen electrophilic character toward organolithium reagents LiMe, LiEt, and LinBu. In these unconventional transformations, the metal center is only indirectly involved by means of the Ir(III)/Ir(I) redox cycle. In the presence of less nucleophilic organolithium reagents, the Cp* ligand also exhibits noninnocent behavior undergoing facile deprotonation, which is also concomitant with the reduction of the metal center. In turn, the weaker alkylating agents EtMgBr and MeMgBr effectively achieve the alkylation of the metal center. These reactive iridium(III) alkyls partake in subsequent reactions: while the ethyl complex undergoes ß-H elimination, the methyl derivative releases methane by a remote C-H bond activation. Computational studies, including the quantum theory of atoms in molecules (QTAIM), support that the preferential activation of the non-benzylic C-H bonds takes place via sigma-bond metathesis.

3.
Angew Chem Int Ed Engl ; 60(37): 20210-20214, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34213041

RESUMO

Catalytic formation of borylamines from atmospheric N2 is achieved for the first time using a series of homogenous (triphosphine)Mo complexes. Stepwise functionalization of the (triphosphine)Mo-nitrido complex with chloroborane led to the synthesis of the imido complex. Electrochemical characterization of the (PPP)Mo-nitrido and (PPP)Mo-borylimido complexes showed that the latter is much more easily reduced.

4.
J Am Chem Soc ; 141(6): 2205-2210, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30682245

RESUMO

C-H bond activation at cationic [(η5-C5Me5)Ir(PMe2Ar')] centers is described, where PMe2Ar' are the terphenyl phosphine ligands PMe2ArXyl2 and PMe2ArDipp2. Different pathways are defined for the conversion of the five-coordinate complexes [(η5-C5Me5)IrCl(PMe2Ar')]+, 2(Xyl)+ and 2(Dipp)+, into the corresponding pseudoallyls 3(Xyl)+ and 3(Dipp)+. In the absence of an external Brønsted base, electrophilic, remote ζ C-H activation takes place, for which the participation of dicationic species, [(η5-C5Me5)Ir(PMe2Ar')]2+, is proposed. When NEt3 is present, the PMe2ArDipp2 system is shown to proceed via 4(Dipp)+ as an intermediate en route to the thermodynamic, isomeric product 3(Dipp)+. This complex interconversion involves a non-innocent C5Me5 ligand, which participates in C-H and C-C bond formation and cleavage. Remarkably, the conversion of 4(Dipp)+ to 3(Dipp)+ also proceeds in the solid state.

5.
Angew Chem Int Ed Engl ; 57(39): 12865-12868, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30039532

RESUMO

Intermolecular, stepwise functionalization by BH bonds of a (triphosphine)MoIV -nitrido complex generated by N2 splitting is reported. The imido-hydride and di-hydride-amido MoIV complexes have been isolated and characterized. Addition of PinBH to the [Mo(H)2 (N(BPin)2 )]+ complex at room temperature results in the liberation of borylamines from the metal center.

6.
Angew Chem Int Ed Engl ; 54(51): 15379-84, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26555404

RESUMO

Reactions of the gold(I) triflimide complex [Au(NTf2 )(PMe2 Ar${{^{{\rm Dipp}{_{2}}}}}$)] (1) with the gold(I) hydrocarbyl species [AuR(PMe2 Ar${{^{{\rm Dipp}{_{2}}}}}$)] (2 a-2 c) enable the isolation of hydrocarbyl-bridged cationic digold complexes with the general composition [Au2 (µ-R)(PMe2 Ar${{^{{\rm Dipp}{_{2}}}}}$)2 ][NTf2 ], where Ar${{^{{\rm Dipp}{_{2}}}}}$=C6 H3 -2,6-(C6 H3 -2,6-iPr2 )2 and R=Me (3), CHCH2 (4), or CCH (5). Compound 3 is the first alkyl-bridged digold complex to be reported and features a symmetric [Au(µ-CH3 )Au](+) core. Complexes 4 and 5 are the first species of their kind that contain simple, unsubstituted vinyl and acetylide units, respectively. In the series of complexes 3-5, the bridging carbon atom systematically changes its hybridization from sp(3) to sp(2) and sp. Concomitant with this change, and owing to variations in the nature of the bonding within the [Au(µ-R)Au](+) unit, there is a gradual decrease in aurophilicity, that is, the strength of the Au⋅⋅⋅Au bonding interaction decreases. This change is illustrated by a monotonic increase in the Au-Au distance by approximately 0.3 Šfrom R=CH3 (2.71 Å) to CHCH2 (3.07 Å) and CCH (3.31 Å).

7.
Angew Chem Int Ed Engl ; 54(30): 8751-5, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26095956

RESUMO

The stable cationic iridacyclopentenylidene [Tp(Me2)Ir(=CHC(Me)=C(Me)CH2(NCMe)]PF6 (A; Tp(Me2)=hydrotris(3,5-dimethylpyrazolyl)borate) has been obtained by α-hydride abstraction from the iridacyclopent-2-ene [Tp(Me2)Ir(CH2C(Me)=C(Me)CH2)(NCMe)]. Complex A exhibits Brønsted-Lowry acidity at the Ir-CH2 and proximal (relative to Ir-CH2 ) methyl sites. The coordination of an extra molecule of acetonitrile to the iridium center initiates the reversible isomerization of the chelating carbon chain of A to the monodentate butadienyl ligand of complex [Tp(Me2)Ir(CH=C(Me)C(Me)=CH2)(NCMe)2]PF6, which is capable to engage in a water-promoted C-C coupling with the MeCN co-ligands. The product is an aesthetically appealing bicyclic structure that resembles the hydrocarbon barrelene.

8.
Inorg Chem ; 52(11): 6694-704, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23675910

RESUMO

This work details the synthesis and structural identification of a series of complexes of the (η(5)-C5Me5)Ir(III) unit coordinated to cyclometalated bis(aryl)phosphine ligands, PR'(Ar)2, for R' = Me and Ar = 2,4,6-Me3C6H2, 1b; 2,6-Me2-4-OMe-C6H2, 1c; 2,6-Me2-4-F-C6H2, 1d; R' = Et, Ar = 2,6-Me2C6H3, 1e. Both chloride- and hydride-containing compounds, 2b-2e and 3b-3e, respectively, are described. Reactions of chlorides 2 with NaBArF (BArF = B(3,5-C6H3(CF3)2)4) in the presence of CO form cationic carbonyl complexes, 4(+), with ν(CO) values in the narrow interval 2030-2040 cm(-1), indicating similar π-basicity of the Ir(III) center of these complexes. In the absence of CO, NaBArF forces κ(4)-P,C,C',C″ coordination of the metalated arm (studied for the selected complexes 5b, 5d, and 5e), a binding mode so far encountered only when the phosphine contains two benzylic groups. A base-catalyzed intramolecular, dehydrogenative, C-C coupling reaction converts the κ(4) species 5d and 5e into the corresponding hydrido phosphepine complexes 6d and 6e. Using CD3OD as the source of deuterium, the chlorides 2 undergo deuteration of their 11 benzylic positions whereas hydrides 3 experience only D incorporation into the Ir-H and Ir-CH2 sites. Mechanistic schemes that explain this diversity have come to light thanks to experimental and theoretical DFT studies that are also reported.


Assuntos
Irídio/química , Compostos Organometálicos/química , Fosfinas/química , Catálise , Ciclização , Ligantes , Estrutura Molecular , Compostos Organometálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA