Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 24(4): 580-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24414704

RESUMO

The myelodysplastic syndrome (MDS) is a clonal hematologic disorder that frequently evolves to acute myeloid leukemia (AML). Its pathogenesis remains unclear, but mutations in epigenetic modifiers are common and the disease often responds to DNA methylation inhibitors. We analyzed DNA methylation in the bone marrow and spleen in two mouse models of MDS/AML, the NUP98-HOXD13 (NHD13) mouse and the RUNX1 mutant mouse model. Methylation array analysis showed an average of 512/3445 (14.9%) genes hypermethylated in NHD13 MDS, and 331 (9.6%) genes hypermethylated in RUNX1 MDS. Thirty-two percent of genes in common between the two models (2/3 NHD13 mice and 2/3 RUNX1 mice) were also hypermethylated in at least two of 19 human MDS samples. Detailed analysis of 41 genes in mice showed progressive drift in DNA methylation from young to old normal bone marrow and spleen; to MDS, where we detected accelerated age-related methylation; and finally to AML, which markedly extends DNA methylation abnormalities. Most of these genes showed similar patterns in human MDS and AML. Repeat element hypomethylation was rare in MDS but marked the transition to AML in some cases. Our data show consistency in patterns of aberrant DNA methylation in human and mouse MDS and suggest that epigenetically, MDS displays an accelerated aging phenotype.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Animais , Células da Medula Óssea , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Síndromes Mielodisplásicas/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética
2.
J Neurosci ; 35(34): 12002-17, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311780

RESUMO

Lamin B1 is a component of the nuclear lamina and plays a critical role in maintaining nuclear architecture, regulating gene expression and modulating chromatin positioning. We have previously shown that LMNB1 gene duplications cause autosomal dominant leukodystrophy (ADLD), a fatal adult onset demyelinating disease. The mechanisms by which increased LMNB1 levels cause ADLD are unclear. To address this, we used a transgenic mouse model where Lamin B1 overexpression is targeted to oligodendrocytes. These mice showed severe vacuolar degeneration of the spinal cord white matter together with marked astrogliosis, microglial infiltration, and secondary axonal damage. Oligodendrocytes in the transgenic mice revealed alterations in histone modifications favoring a transcriptionally repressed state. Chromatin changes were accompanied by reduced expression of genes involved in lipid synthesis pathways, many of which are known to play important roles in myelin regulation and are preferentially expressed in oligodendrocytes. Decreased lipogenic gene expression resulted in a significant reduction in multiple classes of lipids involved in myelin formation. Many of these gene expression changes and lipid alterations were observed even before the onset of the phenotype, suggesting a causal role. Our findings establish, for the first time, a link between LMNB1 and lipid synthesis in oligodendrocytes, and provide a mechanistic framework to explain the age dependence and white matter involvement of the disease phenotype. These results have implications for disease pathogenesis and may also shed light on the regulation of lipid synthesis pathways in myelin maintenance and turnover. SIGNIFICANCE STATEMENT: Autosomal dominant leukodystrophy (ADLD) is fatal neurological disorder caused by increased levels of the nuclear protein, Lamin B1. The disease is characterized by an age-dependent loss of myelin, the fatty sheath that covers nerve fibers. We have studied a mouse model where Lamin B1 level are increased in oligodendrocytes, the cell type that produces myelin in the CNS. We demonstrate that destruction of myelin in the spinal cord is responsible for the degenerative phenotype in our mouse model. We show that this degeneration is mediated by reduced expression of lipid synthesis genes and the subsequent reduction in myelin enriched lipids. These findings provide a mechanistic framework to explain the age dependence and tissue specificity of the ADLD disease phenotype.


Assuntos
Envelhecimento/metabolismo , Doenças Desmielinizantes/metabolismo , Lamina Tipo B/biossíntese , Metabolismo dos Lipídeos/fisiologia , Envelhecimento/genética , Animais , Doenças Desmielinizantes/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Oligodendroglia/metabolismo
3.
Nucleic Acids Res ; 42(11): 6956-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24875481

RESUMO

TET1 is a 5-methylcytosine dioxygenase and its DNA demethylating activity has been implicated in pluripotency and reprogramming. However, the precise role of TET1 in DNA methylation regulation outside of developmental reprogramming is still unclear. Here, we show that overexpression of the TET1 catalytic domain but not full length TET1 (TET1-FL) induces massive global DNA demethylation in differentiated cells. Genome-wide mapping reveals that 5-hydroxymethylcytosine production by TET1-FL is inhibited as DNA methylation increases, which can be explained by the preferential binding of TET1-FL to unmethylated CpG islands (CGIs) through its CXXC domain. TET1-FL specifically accumulates 5-hydroxymethylcytosine at the edges of hypomethylated CGIs, while knockdown of endogenous TET1 induces methylation spreading from methylated edges into hypomethylated CGIs. We also found that gene expression changes after TET1-FL overexpression are relatively small and independent of its dioxygenase function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically prevents aberrant methylation spreading into CGIs in differentiated cells.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , Domínio Catalítico , Diferenciação Celular/genética , Ilhas de CpG , Citosina/análogos & derivados , Citosina/análise , Citosina/metabolismo , Proteínas de Ligação a DNA/química , Dioxigenases/química , Células HEK293 , Humanos , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas/química , Transcrição Gênica
4.
Br J Haematol ; 169(3): 344-51, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25612675

RESUMO

Correlative and functional studies support the involvement of the RUNX gene family in haematological malignancies. To elucidate the role of epigenetics in RUNX inactivation, we evaluated promoter DNA methylation of RUNX1, 2, and 3 in 23 leukaemia cell lines and samples from acute myeloid leukaemia (AML), acute lymphocytic leukaemia (ALL) and myelodysplatic syndromes (MDS) patients. RUNX1 and RUNX2 gene promoters were mostly unmethylated in cell lines and clinical samples. Hypermethylation of RUNX3 was frequent among cell lines (74%) and highly variable among patient samples, with clear association to cytogenetic status. High frequency of RUNX3 hypermethylation (85% of the 20 studied cases) was found in AML patients with inv(16)(p13.1q22) compared to other AML subtypes (31% of the other 49 cases). RUNX3 hypermethylation was also frequent in ALL (100% of the six cases) but low in MDS (21%). In support of a functional role, hypermethylation of RUNX3 was correlated with low levels of protein, and treatment of cell lines with the DNA demethylating agent, decitabine, resulted in mRNA re-expression. Furthermore, relapse-free survival of non-inv(16)(p13.1q22) AML patients without RUNX3 methylation was significantly better (P = 0·016) than that of methylated cases. These results suggest that RUNX3 silencing is an important event in inv(16)(p13.1q22) leukaemias.


Assuntos
Inversão Cromossômica , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Metilação de DNA , Leucemia Mieloide Aguda/genética , Regiões Promotoras Genéticas , Adulto , Idoso , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Decitabina , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidade , Pessoa de Meia-Idade , Ativação Transcricional/efeitos dos fármacos
5.
Gastroenterology ; 146(2): 530-38.e5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24211491

RESUMO

BACKGROUND & AIMS: Subgroups of colorectal carcinomas (CRCs) characterized by DNA methylation anomalies are termed CpG island methylator phenotype (CIMP)1, CIMP2, or CIMP-negative. The pathogenesis of CIMP1 colorectal carcinomas, and their effects on patients' prognoses and responses to treatment, differ from those of other CRCs. We sought to identify genetic somatic alterations associated with CIMP1 CRCs. METHODS: We examined genomic DNA samples from 100 primary CRCs, 10 adenomas, and adjacent normal-appearing mucosae from patients undergoing surgery or colonoscopy at 3 tertiary medical centers. We performed exome sequencing of 16 colorectal tumors and their adjacent normal tissues. Extensive comparison with known somatic alterations in CRCs allowed segregation of CIMP1-exclusive alterations. The prevalence of mutations in selected genes was determined from an independent cohort. RESULTS: We found that genes that regulate chromatin were mutated in CIMP1 CRCs; the highest rates of mutation were observed in CHD7 and CHD8, which encode members of the chromodomain helicase/adenosine triphosphate-dependent chromatin remodeling family. Somatic mutations in these 2 genes were detected in 5 of 9 CIMP1 CRCs. A prevalence screen showed that nonsilencing mutations in CHD7 and CHD8 occurred significantly more frequently in CIMP1 tumors (18 of 42 [43%]) than in CIMP2 (3 of 34 [9%]; P < .01) or CIMP-negative tumors (2 of 34 [6%]; P < .001). CIMP1 markers had increased binding by CHD7, compared with all genes. Genes altered in patients with CHARGE syndrome (congenital malformations involving the central nervous system, eye, ear, nose, and mediastinal organs) who had CHD7 mutations were also altered in CRCs with mutations in CHD7. CONCLUSIONS: Aberrations in chromatin remodeling could contribute to the development of CIMP1 CRCs. A better understanding of the biological determinants of CRCs can be achieved when these tumors are categorized according to their epigenetic status.


Assuntos
Cromatina , Neoplasias Colorretais/genética , Ilhas de CpG , DNA Helicases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Mutação , Fatores de Transcrição/genética , Adenoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Exoma , Feminino , Inativação Gênica , Marcadores Genéticos , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Fenótipo , Análise de Sequência de DNA
6.
Contemp Oncol (Pozn) ; 19(1A): A30-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25691819

RESUMO

Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) requires profound alterations in the epigenetic landscape. During reprogramming, a change in chromatin structure resets the gene expression and stabilises self-renewal. Reprogramming is a highly inefficient process, in part due to multiple epigenetic barriers. Although many epigenetic factors have already been shown to affect self-renewal and pluripotency in embryonic stem cells (ESCs), only a few of them have been examined in the context of dedifferentiation. In order to improve current protocols of iPSCs generation, it is essential to identify epigenetic drivers and blockages of somatic cell reprogramming.

7.
Nucleic Acids Res ; 40(15): 7257-68, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22600741

RESUMO

Repression of many tumor suppressor genes in cancer is concurrent with aberrantly increased DNA methylation levels at promoter CpG islands (CGIs). About one-fourth of empirically defined human promoters are surrounded by or contain clustered repetitive elements. It was previously observed that a sharp transition of methylation exists between highly methylated repetitive elements and unmethylated promoter-CGIs in normal tissues. The factors that lead to aberrant CGI hypermethylation in cancer remain poorly understood. Here, we established a site-specific integration system with enforced local transcriptional repression in colorectal cancer cells and monitored the occurrence of initial de novo methylation at specific CG sites adjacent to the CGI of the INSL6 promoter, which could be accelerated by binding a KRAB-containing transcriptional factor. Additional repetitive elements from P16 and RIL (PDLIM4), if situated adjacent to the promoter of INSL6, could confer DNA methylation spreading into the CGI particularly in the setting of KRAB-factor binding. However, a repressive chromatin alone was not sufficient to initiate DNA methylation, which required specific DNA sequences and was integration-site (and/or cell-line) specific. Overall, these results demonstrate a requirement for specific DNA sequences to trigger de novo DNA methylation, and repetitive elements as cis-regulatory factors to cooperate with advanced transcriptional repression in promoting methylation spreading.


Assuntos
Ilhas de CpG , Metilação de DNA , Inativação Gênica , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica , Linhagem Celular Tumoral , Cromatina/metabolismo , DNA/química , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Transgenes
8.
Genome Res ; 20(10): 1369-82, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20716667

RESUMO

Epigenetic silencing plays an important role in cancer development. An attractive hypothesis is that local DNA features may participate in differential predisposition to gene hypermethylation. We found that, compared with methylation-resistant genes, methylation-prone genes have a lower frequency of SINE and LINE retrotransposons near their transcription start site. In several large testing sets, this distribution was highly predictive of promoter methylation. Genome-wide analysis showed that 22% of human genes were predicted to be methylation-prone in cancer; these tended to be genes that are down-regulated in cancer and that function in developmental processes. Moreover, retrotransposon distribution marks a larger fraction of methylation-prone genes compared to Polycomb group protein (PcG) marking in embryonic stem cells; indeed, PcG marking and our predictive model based on retrotransposon frequency appear to be correlated but also complementary. In summary, our data indicate that retrotransposon elements, which are widespread in our genome, are strongly associated with gene promoter DNA methylation in cancer and may in fact play a role in influencing epigenetic regulation in normal and abnormal physiological states.


Assuntos
Metilação de DNA , Neoplasias/genética , Retroelementos/genética , Linhagem Celular Tumoral , Epigenômica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genoma Humano , Humanos , Leucemia Mieloide Aguda , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária
9.
PLoS Genet ; 4(8): e1000162, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18725933

RESUMO

Hundreds of genes show aberrant DNA hypermethylation in cancer, yet little is known about the causes of this hypermethylation. We identified RIL as a frequent methylation target in cancer. In search for factors that influence RIL hypermethylation, we found a 12-bp polymorphic sequence around its transcription start site that creates a long allele. Pyrosequencing of homozygous tumors revealed a 2.1-fold higher methylation for the short alleles (P<0.001). Bisulfite sequencing of cancers heterozygous for RIL showed that the short alleles are 3.1-fold more methylated than the long (P<0.001). The comparison of expression levels between unmethylated long and short EBV-transformed cell lines showed no difference in expression in vivo. Electrophorectic mobility shift assay showed that the inserted region of the long allele binds Sp1 and Sp3 transcription factors, a binding that is absent in the short allele. Transient transfection of RIL allele-specific transgenes showed no effects of the additional Sp1 site on transcription early on. However, stable transfection of methylation-seeded constructs showed gradually decreasing transcription levels from the short allele with eventual spreading of de novo methylation. In contrast, the long allele showed stable levels of expression over time as measured by luciferase and approximately 2-3-fold lower levels of methylation by bisulfite sequencing (P<0.001), suggesting that the polymorphic Sp1 site protects against time-dependent silencing. Our finding demonstrates that, in some genes, hypermethylation in cancer is dictated by protein-DNA interactions at the promoters and provides a novel mechanism by which genetic polymorphisms can influence an epigenetic state.


Assuntos
Metilação de DNA , Polimorfismo Genético , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Transformada , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas com Domínio LIM , Leucemia/genética , Leucemia/metabolismo , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , Ratos , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3/genética , Sítio de Iniciação de Transcrição
10.
Nat Genet ; 53(10): 1456-1468, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594038

RESUMO

Glioma intratumoral heterogeneity enables adaptation to challenging microenvironments and contributes to therapeutic resistance. We integrated 914 single-cell DNA methylomes, 55,284 single-cell transcriptomes and bulk multi-omic profiles across 11 adult IDH mutant or IDH wild-type gliomas to delineate sources of intratumoral heterogeneity. We showed that local DNA methylation disorder is associated with cell-cell DNA methylation differences, is elevated in more aggressive tumors, links with transcriptional disruption and is altered during the environmental stress response. Glioma cells under in vitro hypoxic and irradiation stress increased local DNA methylation disorder and shifted cell states. We identified a positive association between genetic and epigenetic instability that was supported in bulk longitudinally collected DNA methylation data. Increased DNA methylation disorder associated with accelerated disease progression and recurrently selected DNA methylation changes were enriched for environmental stress response pathways. Our work identified an epigenetically facilitated adaptive stress response process and highlights the importance of epigenetic heterogeneity in shaping therapeutic outcomes.


Assuntos
Neoplasias Encefálicas/genética , Plasticidade Celular/genética , Epigênese Genética , Glioma/genética , Análise de Célula Única , Estresse Fisiológico/genética , Evolução Clonal , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Genoma Humano , Humanos , Mutação/genética , Filogenia , Regiões Promotoras Genéticas/genética , Microambiente Tumoral/genética
11.
Gastroenterology ; 136(7): 2149-58, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19375421

RESUMO

BACKGROUND & AIMS: Aberrant DNA methylation is an early and frequent process in gastric carcinogenesis and could be useful for detection of gastric neoplasia. We hypothesized that methylation analysis of DNA recovered from gastric washes could be used to detect gastric cancer. METHODS: We studied 51 candidate genes in 7 gastric cancer cell lines and 24 samples (training set) and identified 6 for further studies. We examined the methylation status of these genes in a test set consisting of 131 gastric neoplasias at various stages. Finally, we validated the 6 candidate genes in a different population of 40 primary gastric cancer samples and 113 nonneoplastic gastric mucosa samples. RESULTS: Six genes (MINT25, RORA, GDNF, ADAM23, PRDM5, MLF1) showed frequent differential methylation between gastric cancer and normal mucosa in the training, test, and validation sets. GDNF and MINT25 were most sensitive molecular markers of early stage gastric cancer, whereas PRDM5 and MLF1 were markers of a field defect. There was a close correlation (r = 0.5-0.9, P = .03-.001) between methylation levels in tumor biopsy and gastric washes. MINT25 methylation had the best sensitivity (90%), specificity (96%), and area under the receiver operating characteristic curve (0.961) in terms of tumor detection in gastric washes. CONCLUSIONS: These findings suggest MINT25 is a sensitive and specific marker for screening in gastric cancer. Additionally, we have developed a new method for gastric cancer detection by DNA methylation in gastric washes.


Assuntos
Metilação de DNA , Predisposição Genética para Doença , Lesões Pré-Cancerosas/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteínas Supressoras de Tumor/genética , Idoso , Análise de Variância , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , DNA de Neoplasias/análise , Detecção Precoce de Câncer , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Lesões Pré-Cancerosas/patologia , Probabilidade , Curva ROC , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Proteínas Supressoras de Tumor/metabolismo
12.
Blood ; 112(4): 1366-73, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18523155

RESUMO

DNA methylation of CpG islands around gene transcription start sites results in gene silencing and plays a role in leukemia pathophysiology. Its impact in leukemia progression is not fully understood. We performed genomewide screening for methylated CpG islands and identified 8 genes frequently methylated in leukemia cell lines and in patients with acute myeloid leukemia (AML): NOR1, CDH13, p15, NPM2, OLIG2, PGR, HIN1, and SLC26A4. We assessed the methylation status of these genes and of the repetitive element LINE-1 in 30 patients with AML, both at diagnosis and relapse. Abnormal methylation was found in 23% to 83% of patients at diagnosis and in 47% to 93% at relapse, with CDH13 being the most frequently methylated. We observed concordance in methylation of several genes, confirming the presence of a hypermethylator pathway in AML. DNA methylation levels increased at relapse in 25 of 30 (83%) patients with AML. These changes represent much larger epigenetic dysregulation, since methylation microarray analysis of 9008 autosomal genes in 4 patients showed hypermethylation ranging from 5.9% to 13.6% (median 8.3%) genes at diagnosis and 8.0% to 15.2% (median 10.6%) genes in relapse (P < .001). Our data suggest that DNA methylation is involved in AML progression and provide a rationale for the use of epigenetic agents in remission maintenance.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Progressão da Doença , Genes Neoplásicos , Genômica , Humanos , Cariotipagem , Pessoa de Meia-Idade , Recidiva
13.
Cancer Res ; 66(10): 5495-503, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16707479

RESUMO

5-Aza-2'-deoxycytidine (decitabine) is postulated to have clinical activity in myeloid leukemias via its ability to inhibit DNA methylation. To study this, we examined DNA methylation in patients with leukemia treated with decitabine. Five days after the treatment, total genomic 5-methylcytosine/cytosine decreased on average by 14% (from 4.3% to 3.7%), whereas methylation of repetitive DNA elements showed a mean decrease of 9% and 16% for Alu and long interspersed nucleotide elements, respectively. Methylation decreased linearly with increasing doses between 5 and 20 mg/m(2)/d (r = 0.88; P = 0.05) but showed a plateau above that. Hypomethylation correlated with response in patients with acute myelogenous leukemia treated with low doses (5-20 mg/m(2)/d), but patients with chronic myelogenous leukemia treated with high doses (100-180 mg/m(2)/d) showed no such correlation. Aberrant methylation of p15 (>10%) was found in 27% of patients, and 80% of these showed a decrease by at least one third, but this did not correlate with response. The imprinted gene H19 showed little change in methylation after decitabine. In conclusion, we show dose-dependent hypomethylation after decitabine at low doses. Increasing the dose, which has been shown previously to result in a reduced response rate, was not accompanied by further hypomethylation.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Metilação de DNA/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Decitabina , Relação Dose-Resposta a Droga , Feminino , Genes p53/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , RNA Longo não Codificante , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
14.
Cancer Res ; 65(5): 1693-9, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15753364

RESUMO

A detailed genome mapping analysis of 213,636 expressed sequence tags (EST) derived from nontumor and tumor tissues of the oral cavity, larynx, pharynx, and thyroid was done. Transcripts matching known human genes were identified; potential new splice variants were flagged and subjected to manual curation, pointing to 788 putatively new alternative splicing isoforms, the majority (75%) being insertion events. A subset of 34 new splicing isoforms (5% of 788 events) was selected and 23 (68%) were confirmed by reverse transcription-PCR and DNA sequencing. Putative new genes were revealed, including six transcripts mapped to well-studied chromosomes such as 22, as well as transcripts that mapped to 253 intergenic regions. In addition, 2,251 noncoding intronic RNAs, eventually involved in transcriptional regulation, were found. A set of 250 candidate markers for loss of heterozygosis or gene amplification was selected by identifying transcripts that mapped to genomic regions previously known to be frequently amplified or deleted in head, neck, and thyroid tumors. Three of these markers were evaluated by quantitative reverse transcription-PCR in an independent set of individual samples. Along with detailed clinical data about tumor origin, the information reported here is now publicly available on a dedicated Web site as a resource for further biological investigation. This first in silico reconstruction of the head, neck, and thyroid transcriptomes points to a wealth of new candidate markers that can be used for future studies on the molecular basis of these tumors. Similar analysis is warranted for a number of other tumors for which large EST data sets are available.


Assuntos
Perfilação da Expressão Gênica , Marcadores Genéticos , Neoplasias de Cabeça e Pescoço/genética , RNA Mensageiro/genética , Neoplasias da Glândula Tireoide/genética , Transcrição Gênica , Processamento Alternativo , Etiquetas de Sequências Expressas , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Laringe/metabolismo , Boca/metabolismo , Faringe/metabolismo , Reação em Cadeia da Polimerase , Isoformas de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo
15.
Nucleic Acids Res ; 32(3): e38, 2004 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-14973332

RESUMO

We report a method for studying global DNA methylation based on using bisulfite treatment of DNA and simultaneous PCR of multiple DNA repetitive elements, such as Alu elements and long interspersed nucleotide elements (LINE). The PCR product, which represents a pool of approximately 15 000 genomic loci, could be used for direct sequencing, selective restriction digestion or pyrosequencing, in order to quantitate DNA methylation. By restriction digestion or pyrosequencing, the assay was reproducible with a standard deviation of only 2% between assays. Using this method we found that almost two-thirds of the CpG methylation sites in Alu elements are mutated, but of the remaining methylation target sites, 87% were methylated. Due to the heavy methylation of repetitive elements, this assay was especially useful in detecting decreases in DNA methylation, and this assay was validated by examining cell lines treated with the methylation inhibitor 5-aza-2'deoxycytidine (DAC), where we found a 1-16% decrease in Alu element and 18-60% LINE methylation within 3 days of treatment. This method can be used as a surrogate marker of genome-wide methylation changes. In addition, it is less labor intensive and requires less DNA than previous methods of assessing global DNA methylation.


Assuntos
Azacitidina/análogos & derivados , Reação em Cadeia da Polimerase/métodos , Sequências Repetitivas de Ácido Nucleico/genética , Elementos Alu/genética , Azacitidina/farmacologia , Linhagem Celular Tumoral , Ilhas de CpG/genética , DNA/química , DNA/genética , DNA/metabolismo , Metilação de DNA/efeitos dos fármacos , Decitabina , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Mutação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Sulfitos
16.
Epigenetics ; 11(3): 184-93, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26890396

RESUMO

Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor-derived xenografts (PDX) revealed that AR-negative SCPC (AR(-)SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR-positive castration-resistant adenocarcinomas (AR(+)ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR(-) and AR(+) PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR(-)SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR(-)SCPC cell lines. We conclude that the epigenome of AR(-) is distinct from that of AR(+) castration-resistant prostate carcinomas, and that the AR(-) phenotype can be reversed with epigenetic drugs.


Assuntos
Carcinoma de Células Pequenas/genética , Metilação de DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Animais , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Linhagem da Célula/genética , Ilhas de CpG/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Biol Ther ; 3(1): 82-6, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14726683

RESUMO

Tumor suppressor genes can become inactivated in cancer via hypermethylation of their promoter. The retinoic acid receptor beta (RARbeta) gene is expressed from two distinct promoters, both of which have CpG islands. RARbeta1 is expressed primarily during embryogenesis, whereas RARbeta2 is expressed in adult tissues and hypermethylated in a number of cancer cells. We used combined bisulfite restriction analysis to evaluate their methylation in colorectal mucosa and tumors. Methylation of RARbeta1 was detected, with a mean of 2% in normal colon tissues in young subjects (< 32 years), and 16% in older subjects (> 75 years) (P < 0.001). Using paired normal/tumor tissue samples, we found higher mean methylation rate in tumors than in adjacent normal tissue (mean, 46% versus 16%; P < 0.001) and hypermethylation of RARbeta1 in all eight cell lines examined. By RT-PCR, RARbeta1 was not expressed in normal adult colon tissues and its expression could not be efficiently activated in most cell lines by the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR). RARbeta2 methylation was also observed in normal colon tissues and was lower in young individuals than in older ones (mean, 11% versus 23%; P < 0.05). Among paired samples, RARbeta2 methylation was higher in tumor tissue than in normal tissue in 14 cases, vice versa in 7 cases, and equal in 6 cases. All eight cell lines were hypermethylated and did not express RARbeta2, but RARbeta2 expression could be reactivated easily by 5-Aza-CdR. We suggest that the embryonic RARbeta1 isoform is readily hypermethylated in aging colon mucosa and all colorectal cancers because of its lack of expression in normal tissues. The adult RARbeta2 isoform also shows age-related methylation in normal tissues but more variable methylation in colorectal cancer, perhaps because its expression offers continued protection against methylation or its silencing does not provide a selective advantage in the early stages of the disease.


Assuntos
Neoplasias do Colo/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica/genética , Receptores do Ácido Retinoico/genética , Sequência de Bases , Divisão Celular/genética , Linhagem Celular Tumoral , Metilação de DNA , Primers do DNA , DNA de Neoplasias/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética
18.
Cancer Res ; 74(5): 1311-8, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24385213

RESUMO

Fusobacterium species are part of the gut microbiome in humans. Recent studies have identified overrepresentation of Fusobacterium in colorectal cancer tissues, but it is not yet clear whether this is pathogenic or simply an epiphenomenon. In this study, we evaluated the relationship between Fusobacterium status and molecular features in colorectal cancers through quantitative real-time PCR in 149 colorectal cancer tissues, 89 adjacent normal appearing mucosae and 72 colonic mucosae from cancer-free individuals. Results were correlated with CpG island methylator phenotype (CIMP) status, microsatellite instability (MSI), and mutations in BRAF, KRAS, TP53, CHD7, and CHD8. Whole-exome capture sequencing data were also available in 11 cases. Fusobacterium was detectable in 111 of 149 (74%) colorectal cancer tissues and heavily enriched in 9% (14/149) of the cases. As expected, Fusobacterium was also detected in normal appearing mucosae from both cancer and cancer-free individuals, but the amount of bacteria was much lower compared with colorectal cancer tissues (a mean of 250-fold lower for Pan-fusobacterium). We found the Fusobacterium-high colorectal cancer group (FB-high) to be associated with CIMP positivity (P = 0.001), TP53 wild-type (P = 0.015), hMLH1 methylation positivity (P = 0.0028), MSI (P = 0.018), and CHD7/8 mutation positivity (P = 0.002). Among the 11 cases where whole-exome sequencing data were available, two that were FB-high cases also had the highest number of somatic mutations (a mean of 736 per case in FB-high vs. 225 per case in all others). Taken together, our findings show that Fusobacterium enrichment is associated with specific molecular subsets of colorectal cancers, offering support for a pathogenic role in colorectal cancer for this gut microbiome component.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Fusobacterium/genética , Idoso , Ilhas de CpG/genética , DNA Helicases/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Feminino , Infecções por Fusobacterium/genética , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Mucosa/microbiologia , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas ras/genética
19.
Cancer Prev Res (Phila) ; 6(10): 1093-100, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23943784

RESUMO

Whole blood DNA methylation analysis has been proposed to be a risk marker for cancer that can be used to target patients for preventive interventions. To test this, we examined whole blood DNA methylation of 16 CpG island promoters and LINE1 repetitive element in patients with gastric cancer and control subjects. Bisulfite pyrosequencing was used to quantify the methylation of 14 CpG island promoters (MINT25, RORA, GDNF, CDH1, RARAB2, ER, CDH13, MYOD1, SFRP1, P2RX7, SLC16A12, IGF2, DPYS, and N33) and LINE1 from 72 patients with gastric cancer, 67 control, and 52 healthy young individuals. Quantitative methylation-specific real-time PCR was also conducted for 3 CpG island promoters (MINT25, MYO3A, and SOX11). Among all sites tested, only a marginal increase in the methylation of the SFRP1 promoter was observed in the blood of patients with gastric cancer when compared with the control group (11.3 % vs 10.5%; age-adjusted P value: P = 0.009), and this association was also seen in a validation set of 91 patients with gastric cancer (11.5% vs 10.5%; age-adjusted P value: P = 0.001). The methylation of 9 sites (GDNF, CDH1, RARAB2, CDH13, MYOD1, SFRP1, SLC16A12, DPYS, N33, and LINE1) and their mean Z score was correlated with higher age (R = 0.41, P < 0.0001) and marginally with telomere shortening (R = -0.18, P = 0.01) but not with gastric cancer risk (other than SFRP1 methylation). Variability in whole blood DNA methylation of cancer markers is primarily associated with aging, reflecting turnover of white blood cells, and has no direct link to gastric cancer predisposition. SFRP1 methylation in whole blood may be associated with gastric cancer risk.


Assuntos
Biomarcadores Tumorais/sangue , Metilação de DNA , DNA/sangue , Neoplasias Gástricas/genética , Adulto , Idoso , Estudos de Casos e Controles , Ilhas de CpG , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Risco , Análise de Sequência de DNA , Neoplasias Gástricas/metabolismo , Telômero/ultraestrutura , Adulto Jovem
20.
Epigenetics ; 7(12): 1368-78, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23075513

RESUMO

Genome wide analysis of DNA methylation provides important information in a variety of diseases, including cancer. Here, we describe a simple method, Digital Restriction Enzyme Analysis of Methylation (DREAM), based on next generation sequencing analysis of methylation-specific signatures created by sequential digestion of genomic DNA with SmaI and XmaI enzymes. DREAM provides information on 150,000 unique CpG sites, of which 39,000 are in CpG islands and 30,000 are at transcription start sites of 13,000 RefSeq genes. We analyzed DNA methylation in healthy white blood cells and found methylation patterns to be remarkably uniform. Inter individual differences > 30% were observed only at 227 of 28,331 (0.8%) of autosomal CpG sites. Similarly, > 30% differences were observed at only 59 sites when we comparing the cord and adult blood. These conserved methylation patterns contrasted with extensive changes affecting 18-40% of CpG sites in a patient with acute myeloid leukemia and in two leukemia cell lines. The method is cost effective, quantitative (r ( 2) = 0.93 when compared with bisulfite pyrosequencing) and reproducible (r ( 2) = 0.997). Using 100-fold coverage, DREAM can detect differences in methylation greater than 10% or 30% with a false positive rate below 0.05 or 0.001, respectively. DREAM can be useful in quantifying epigenetic effects of environment and nutrition, correlating developmental epigenetic variation with phenotypes, understanding epigenetics of cancer and chronic diseases, measuring the effects of drugs on DNA methylation or deriving new biological insights into mammalian genomes.


Assuntos
Metilação de DNA , Leucemia/genética , Leucócitos/fisiologia , Análise de Sequência de DNA/métodos , Sequência de Bases , Linhagem Celular Tumoral , Cromossomos Humanos X , Sequência Conservada , Ilhas de CpG , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Feminino , Impressão Genômica , Humanos , Leucemia/patologia , Leucemia Mieloide Aguda/genética , Masculino , Valores de Referência , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA