Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Differentiation ; 138: 100790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38908344

RESUMO

Mutation of the GABRA1 gene is associated with neurodevelopmental defects and epilepsy. GABRA1 encodes for the α1 subunit of the γ-aminobutyric acid type A receptor (GABAAR), which regulates the fast inhibitory impulses of the nervous system. Multiple model systems have been developed to understand the function of GABRA1, but these models have produced complex and, at times, incongruent data. Thus, additional model systems are required to validate and substantiate previous results. We sought to provide initial phenotypic analysis of a novel germline mutant allele. Our analysis provides a solid foundation for the future use of this allele to characterize gabra1 functionally and pharmacologically using zebrafish. We investigated the behavioral swim patterns associated with a nonsense mutation of the zebrafish gabra1 (sa43718 allele) gene. The sa43718 allele causes a decrease in gabra1 mRNA expression, which is associated with light induced hypermotility, one phenotype previously associated with seizure like behavior in zebrafish. Mutation of gabra1 was accompanied by decreased mRNA expression of gabra2, gabra3, and gabra5, indicating a reduction in the expression of additional α sub-units of the GABAAR. Although multiple sub-units were decreased, larvae continued to respond to pentylenetetrazole (PTZ), indicating that a residual GABAAR exists in the sa43718 allele. Proteomics analysis demonstrated that mutation of gabra1 is associated with abnormal expression of proteins that regulate synaptic vesicle fusion, vesicle transport, synapse development, and mitochondrial protein complexes. These data support previous studies performed in a zebrafish nonsense allele created by CRISPR/Cas9 and validate that loss of function mutations in the gabra1 gene result in seizure-like phenotypes with abnormal development of the GABA synapse. Our results add to the existing body of knowledge as to the function of GABRA1 during development and validate that zebrafish can be used to provide complete functional characterization of the gene.


Assuntos
Alelos , Receptores de GABA-A , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Mutação com Perda de Função , Códon sem Sentido/genética , Mutação em Linhagem Germinativa , Fenótipo , Convulsões/genética , Convulsões/patologia
2.
J Biol Chem ; 299(6): 104715, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061002

RESUMO

Trypanosomatids are a diverse group of uniflagellate protozoan parasites that include globally relevant pathogens such as Trypanosoma cruzi, the causative agent of Chagas disease. Trypanosomes lack the fatty acid synthase system typically used for de novo fatty acid (FA) synthesis in other eukaryotes. Instead, these microbes have evolved a modular FA elongase (ELO) system comprised of individual ELO enzymes (ELO1-4) that can operate processively to generate long chain- and very long chain-FAs. The importance of ELO's for maintaining lipid homeostasis in trypanosomatids is currently unclear, given their ability to take up and utilize exogenous FAs for lipid synthesis. To assess ELO function in T. cruzi, we generated individual KO lines, Δelo1, Δelo2, and Δelo3, in which the genes encoding ELO1-3 were functionally disrupted in the parasite insect stage (epimastigote). Using unbiased lipidomic and metabolomic analyses, in combination with metabolic tracing and biochemical approaches, we demonstrate that ELO2 and ELO3 are required for global lipid homeostasis, whereas ELO1 is dispensable for this function. Instead, ELO1 activity is needed to sustain mitochondrial activity and normal growth in T. cruzi epimastigotes. The cross-talk between microsomal ELO1 and the mitochondrion is a novel finding that, we propose, merits further examination of the trypanosomatid ELO pathway as critical for central metabolism.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Elongases de Ácidos Graxos/metabolismo , Doença de Chagas/genética , Doença de Chagas/metabolismo , Homeostase , Mitocôndrias/genética , Mitocôndrias/metabolismo , Lipídeos
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731959

RESUMO

Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a major cause of death and disability worldwide. The limited treatment options for CCMs underscore the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding in treatment decisions and identifying potential pharmacological targets. This study aimed to identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1 patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic profiles from both human and mouse CCM models and conducting pathway enrichment analyses, we compared groups to identify potential blood biomarkers with statistical significance. Specific candidate biomarkers primarily associated with metabolism and blood clotting pathways were identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to assess the risk of hemorrhagic CCMs.


Assuntos
Biomarcadores , Hemangioma Cavernoso do Sistema Nervoso Central , Hemangioma Cavernoso do Sistema Nervoso Central/sangue , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico , Humanos , Animais , Camundongos , Prognóstico , Biomarcadores/sangue , Proteômica/métodos , Hemorragia Cerebral/sangue , Hemorragia Cerebral/diagnóstico , Proteína KRIT1/sangue , Modelos Animais de Doenças , Feminino , Masculino
4.
Ecotoxicol Environ Saf ; 241: 113800, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35751931

RESUMO

Through the applications of recycling sewage sludge to soils as nutrients, bisphenol A (BPA) and titanium dioxide nanoparticles (TiO2-NPs) are commonly found in the agricultural environment. Previous studies have reported that BPA and nanoparticles are harmful to the environment. However, the combined toxicity of both compounds is not yet understood. This work presented an in-depth proteomic analysis of Arabidopsis thaliana exposed to BPA and TiO2-NPs concurrently at environmentally relevant levels. Seeds were simultaneously treated with varying concentrations of BPA (0, 10, 100, and 1000 µg·kg-1) and TiO2-NPs (0, 1, 10 and 100 mg·kg-1). In treatment of 1000 µg·kg-1 BPA and 100 mg·kg-1 TiO2-NPs, highest seed germination rate (87.97%, p < 0.05) was observed. Shorter primary roots but more branched roots were obtained in treatments of high BPA and NPs concentrations (100, 1000 µg·kg-1 BPA and 10, 100 mg·kg-1 TiO2-NPs) while no significant effects on plant height and biomass were found. In the comparative analysis, both concentration related positive and negative effects were observed, such as regulation of cell proliferation (positive), root hair elongation (positive), cellular response to oxidative stress (negative), and cell wall organization (negative). In response to the stress caused by BPA and TiO2-NPs, some proteins related to plant root development, such as CD48E, DNAJ2 and GL24, were up-regulated explaining the shorter primary root length and more branched roots. Moreover, Arabidopsis may have stimulated its ability of resource transportation and energy metabolism to overcome the stress and maintain or somehow enhance their growth by up-regulating proteins like TBB6, CALM1, RAA2A, G3PP2 and KASC1. Our comparative proteomics analysis also highlighted multiple biological processes that consequently lead to the stability of plant growth and its stress adaptation. The results demonstrated that applying biosolids to soil as a fertilizer may be considered as a sustainable practice.


Assuntos
Arabidopsis , Nanopartículas , Compostos Benzidrílicos , Fenóis , Proteômica , Esgotos , Solo , Titânio/toxicidade
5.
Molecules ; 27(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35056727

RESUMO

Chagas disease (CD) can be accurately diagnosed by detecting Trypanosoma cruzi in patients' blood using polymerase chain reaction (PCR). However, parasite-derived biomarkers are of great interest for the serological diagnosis and early evaluation of chemotherapeutic efficacy when PCR may fail, owing to a blood parasite load below the method's limit of detection. Previously, we focused on the detection of specific anti-α-galactopyranosyl (α-Gal) antibodies in chronic CD (CCD) patients elicited by α-Gal glycotopes copiously expressed on insect-derived and mammal-dwelling infective parasite stages. Nevertheless, these stages also abundantly express cell surface glycosylphosphatidylinositol (GPI)-anchored glycoproteins and glycoinositolphospholipids (GIPLs) bearing nonreducing terminal ß-galactofuranosyl (ß-Galf) residues, which are equally foreign to humans and, therefore, highly immunogenic. Here we report that CCD patients' sera react specifically with synthetic ß-Galf-containing glycans. We took a reversed immunoglycomics approach that entailed: (a) Synthesis of T. cruzi GIPL-derived Galfß1,3Manpα-(CH2)3SH (glycan G29SH) and Galfß1,3Manpα1,2-[Galfß1,3]Manpα-(CH2)3SH (glycan G32SH); and (b) preparation of neoglycoproteins NGP29b and NGP32b, and their evaluation in a chemiluminescent immunoassay. Receiver-operating characteristic analysis revealed that NGP32b can distinguish CCD sera from sera of healthy individuals with 85.3% sensitivity and 100% specificity. This suggests that Galfß1,3Manpα1,2-[Galfß1,3]Manpα is an immunodominant glycotope and that NGP32b could potentially be used as a novel CCD biomarker.


Assuntos
Doença de Chagas
6.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080480

RESUMO

Chagas disease (CD) is caused by the parasite Trypanosoma cruzi and affects 6-7 million people worldwide. The diagnosis is still challenging, due to extensive parasite diversity encompassing seven genotypes (TcI-VI and Tcbat) with diverse ecoepidemiological, biological, and pathological traits. Chemotherapeutic intervention is usually effective but associated with severe adverse events. The development of safer, more effective therapies is hampered by the lack of biomarker(s) (BMKs) for the early assessment of therapeutic outcomes. The mammal-dwelling trypomastigote parasite stage expresses glycosylphosphatidylinositol-anchored mucins (tGPI-MUC), whose O-glycans are mostly branched with terminal, nonreducing α-galactopyranosyl (α-Gal) glycotopes. These are absent in humans, and thus highly immunogenic and inducers of specific CD anti-α-Gal antibodies. In search for α-Gal-based BMKs, here we describe the synthesis of neoglycoprotein NGP11b, comprised of a carrier protein decorated with the branched trisaccharide Galα(1,2)[Galα(1,6)]Galß. By chemiluminescent immunoassay using sera/plasma from chronic CD (CCD) patients from Venezuela and Mexico and healthy controls, NGP11b exhibited sensitivity and specificity similar to that of tGPI-MUC from genotype TcI, predominant in those countries. Preliminary evaluation of CCD patients subjected to chemotherapy showed a significant reduction in anti-α-Gal antibody reactivity to NGP11b. Our data indicated that NGP11b is a potential BMK for diagnosis and treatment assessment in CCD patients.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Biomarcadores , Doença de Chagas/diagnóstico , Doença de Chagas/tratamento farmacológico , Humanos , Mucinas , Trissacarídeos
7.
J Biol Chem ; 295(17): 5785-5794, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32169899

RESUMO

The Mycobacterium tuberculosis virulence factor EsxA and its chaperone EsxB are secreted as a heterodimer (EsxA:B) and are crucial for mycobacterial escape from phagosomes and cytosolic translocation. Current findings support the idea that for EsxA to interact with host membranes, EsxA must dissociate from EsxB at low pH. However, the molecular mechanism by which the EsxA:B heterodimer separates is not clear. In the present study, using liposome-leakage and cytotoxicity assays, LC-MS/MS-based proteomics, and CCF-4 FRET analysis, we obtained evidence that the Nα-acetylation of the Thr-2 residue on EsxA, a post-translational modification that is present in mycobacteria but absent in Escherichia coli, is required for the EsxA:B separation. Substitutions at Thr-2 that precluded Nα-acetylation inhibited the heterodimer separation and hence prevented EsxA from interacting with the host membrane, resulting in attenuated mycobacterial cytosolic translocation and virulence. Molecular dynamics simulations revealed that at low pH, the Nα-acetylated Thr-2 makes direct and frequent "bind-and-release" contacts with EsxB, which generates a force that pulls EsxB away from EsxA. In summary, our findings provide evidence that the Nα-acetylation at Thr-2 of EsxA facilitates dissociation of the EsxA:B heterodimer required for EsxA membrane permeabilization and mycobacterial cytosolic translocation and virulence.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Citosol/metabolismo , Mycobacterium tuberculosis/fisiologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/metabolismo , Acetilação , Animais , Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/química , Multimerização Proteica , Células RAW 264.7 , Tuberculose/microbiologia , Virulência , Fatores de Virulência/análise , Fatores de Virulência/metabolismo
8.
J Control Release ; 370: 421-437, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701884

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with a high mortality rate due to limited treatment options. Current therapies cannot effectively reverse the damage caused by IPF. Research suggests that promoting programmed cell death (apoptosis) in myofibroblasts, the key cells driving fibrosis, could be a promising strategy. However, inducing apoptosis in healthy cells like epithelial and endothelial cells can cause unwanted side effects. This project addresses this challenge by developing a targeted approach to induce apoptosis specifically in myofibroblasts. We designed liposomes (LPS) decorated with peptides that recognize VCAM-1, a protein highly expressed on myofibroblasts in fibrotic lungs. These VCAM1-targeted LPS encapsulate Venetoclax (VNT), a small molecule drug that inhibits BCL-2, an anti-apoptotic protein. By delivering VNT directly to myofibroblasts, we hypothesize that VCAM1-VNT-LPS can selectively induce apoptosis in these cells, leading to reduced fibrosis and improved lung function. We successfully characterized VCAM1-VNT-LPS for size, surface charge, and drug loading efficiency. Additionally, we evaluated their stability over three months at different temperatures. In vitro and in vivo studies using a bleomycin-induced mouse model of lung fibrosis demonstrated the therapeutic potential of VCAM1-VNT-LPS. These studies showed a reduction in fibrosis-associated proteins (collagen, α-SMA, VCAM1) and BCL-2, while simultaneously increasing apoptosis in myofibroblasts. These findings suggest that VCAM1-targeted delivery of BCL-2 inhibitors using liposomes presents a promising and potentially selective therapeutic approach for IPF.


Assuntos
Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Lipossomos , Camundongos Endogâmicos C57BL , Nanopartículas , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas , Molécula 1 de Adesão de Célula Vascular , Animais , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Nanopartículas/administração & dosagem , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Molécula 1 de Adesão de Célula Vascular/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Apoptose/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Humanos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Masculino , Camundongos , Bleomicina/administração & dosagem
9.
J Control Release ; 370: 110-123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648957

RESUMO

Continuous and aberrant activation of myofibroblasts is the hallmark of pathological fibrosis (e.g., abnormal wound healing). The deposition of excessive extracellular matrix (ECM) components alters or increases the stiffness of tissue and primarily accounts for multiple organ dysfunctions. Among various proteins, Cadherin-11 (CDH11) has been reported to be overexpressed on myofibroblasts in fibrotic tissues. Anti-apoptotic proteins such as (B cell lymphoma-2) (BCL-2) are also upregulated on myofibroblasts. Therefore, we hypothesize that CDH11 could be a targeted domain for cell-specific drug delivery and targeted inhibition of BCL-2 to ameliorate the development of fibrosis in the skin. To prove our hypothesis, we have developed liposomes (LPS) conjugated with CDH11 neutralizing antibody (antiCDH11) to target cell surface CDH11 and loaded these LPS with a BCL-2 inhibitor, Navitoclax (NAVI), to induce apoptosis of CDH11 expressing fibroblasts. The developed LPS were evaluated for physicochemical characterization, stability, in vitro therapeutic efficacy using dermal fibroblasts, and in vivo therapeutic efficacy in bleomycin-induced skin fibrosis model in mice. The findings from in vitro and in vivo studies confirmed that selectivity of LPS was improved towards CDH11 expressing myofibroblasts, thereby improving therapeutic efficacy with no indication of adverse effects. Hence, this novel research work represents a versatile LPS strategy that exhibits promising potential for treating skin fibrosis.


Assuntos
Apoptose , Caderinas , Fibrose , Lipossomos , Pele , Animais , Apoptose/efeitos dos fármacos , Fibrose/tratamento farmacológico , Caderinas/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Compostos de Anilina/química , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Bleomicina/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/uso terapêutico , Camundongos , Masculino
10.
Res Sq ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38978592

RESUMO

The year of 2023 displayed the highest average global temperatures since it has been recorded-the duration and severity of extreme heat are projected to increase. Rising global temperatures represent a major public health threat, especially to occupations exposed to hot environments, such as construction and agricultural workers, and first responders. Despite efforts of the scientific community, there is still a need to characterize the pathophysiological processes leading to heat related illness and develop biomarkers that can predict its onset. Here, we performed a plasma lipidomic analysis on male and female subjects who underwent heat tolerance testing (HTT), consisting of a 2-h treadmill walk at 5 km/h with 2% inclination at a controlled temperature of 40°C. We identified 995 lipids from 27 classes, with nearly half of all detected lipids being responsive to HTT. Lipid classes related to substrate utilization were predominantly affected by HTT, with a downregulation of triacylglycerols and upregulation of free fatty acids and acyl-carnitines (CARs). We additionally examined correlations between changes in plasma lipids by using the physiological strain index (PSI). Here, even chain CAR 4:0, 14:0 and 16:1, suggested by-products of incomplete beta oxidation, and diacylglycerols displayed the highest correlation to PSI. PSI did not correlate with plasma lactate levels, suggesting that correlations between even chain CARs and PSI is related to metabolic efficiency versus physical exertion. Overall, our results show that HTT has a strong impact on the plasma lipidome and that metabolic inefficiencies may underlie heat intolerance.

11.
Carbohydr Res ; 536: 109015, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198982

RESUMO

The protozoan parasite Leishmania (Viannia) braziliensis is among Latin America's most widespread Leishmania species and is responsible for tegumentary leishmaniasis (TL). This disease has multiple clinical presentations, with cutaneous leishmaniasis (CL) being the most frequent. It manifests as one or a few localized skin ulcers, which can spread to other body areas. Hence, early diagnosis and treatment, typically with pentavalent antimonials, is critical. Traditional diagnostic methods, like parasite culture, microscopy, or the polymerase chain reaction (PCR) for detection of the parasite DNA, have limitations due to the uneven distribution of parasites in biopsy samples. Nonetheless, studies have revealed high levels of parasite-specific anti-α-Gal antibodies in L. (V.) braziliensis-infected patients. Previously, we demonstrated that the neoglycoprotein NGP28b, consisting of the L. (Leishmania) major type-2 glycoinositolphospholipid (GIPL)-3-derived trisaccharide Galpα1,6Galpα1,3Galfß conjugated to bovine serum albumin (BSA) via a linker, acts as a reliable serological biomarker (BMK) for L. (V.) braziliensis infection in Brazil. This indicates the presence of GIPL-3 or a similar structure in this parasite, and its terminal trisaccharide either functions as or is part of an immunodominant glycotope. Here, we explored whether extending the trisaccharide with a mannose unit would enhance its efficacy as a biomarker for the serological detection of L. (V.) braziliensis. We synthesized the tetrasaccharide Galpα1,6Galpα1,3Galfß1,3Manpα(CH2)3SH (G31SH) and conjugated it to maleimide-functionalized BSA to afford NGP31b. When we assessed the efficacy of NGP28b and NGP31b by chemiluminescent enzyme-linked immunosorbent assay on a cohort of CL patients with L. (V.) braziliensis infection from Bolivia and Argentina against a healthy control group, both NGPs exhibited similar or identical sensitivity, specificity, and accuracy. This finding implies that the mannose moiety at the reducing end is not part of the glycotope recognized by the parasite-specific anti-α-Gal antibodies in patients' sera, nor does it exert a relevant influence on the terminal trisaccharide's conformation. Moreover, the mannose does not seem to inhibit glycan-antibody interactions. Therefore, NGP31b is a viable and dependable BMK for the serodiagnosis of CL caused by L. (V.) braziliensis.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Humanos , Leishmania braziliensis/genética , Manose , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/tratamento farmacológico , Glicoproteínas , Trissacarídeos
12.
Cancer Res ; 83(22): 3739-3752, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37695315

RESUMO

Pancreatic cancer is a highly lethal disease with obesity as one of the risk factors. Oncogenic KRAS mutations are prevalent in pancreatic cancer and can rewire lipid metabolism by altering fatty acid (FA) uptake, FA oxidation (FAO), and lipogenesis. Identification of the underlying mechanisms could lead to improved therapeutic strategies for treating KRAS-mutant pancreatic cancer. Here, we observed that KRASG12D upregulated the expression of SLC25A1, a citrate transporter that is a key metabolic switch to mediate FAO, fatty acid synthesis, glycolysis, and gluconeogenesis. In genetically engineered mouse models and human pancreatic cancer cells, KRASG12D induced SLC25A1 upregulation via GLI1, which directly stimulated SLC25A1 transcription by binding its promoter. The enhanced expression of SLC25A1 increased levels of cytosolic citrate, FAs, and key enzymes in lipid metabolism. In addition, a high-fat diet (HFD) further stimulated the KRASG12D-GLI1-SLC25A1 axis and the associated increase in citrate and FAs. Pharmacologic inhibition of SLC25A1 and upstream GLI1 significantly suppressed pancreatic tumorigenesis in KrasG12D/+ mice on a HFD. These results reveal a KRASG12D-GLI1-SLC25A1 regulatory axis, with SLC25A1 as an important node that regulates lipid metabolism during pancreatic tumorigenesis, thus indicating an intervention strategy for oncogenic KRAS-driven pancreatic cancer. SIGNIFICANCE: Upregulation of SLC25A1 induced by KRASG12D-GLI1 signaling rewires lipid metabolism and is exacerbated by HFD to drive the development of pancreatic cancer, representing a targetable metabolic axis to suppress pancreatic tumorigenesis.


Assuntos
Metabolismo dos Lipídeos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Citratos , Ácidos Graxos , Metabolismo dos Lipídeos/genética , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
13.
Gene ; 864: 147290, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804358

RESUMO

Mutations in the HCFC1 transcriptional co-factor protein are the cause of cblX syndrome and X-linked intellectual disability (XLID). cblX is the more severe disorder associated with intractable epilepsy, abnormal cobalamin metabolism, facial dysmorphia, cortical gyral malformations, and intellectual disability. In vitro, murine Hcfc1 regulates neural precursor (NPCs) proliferation and number, which has been validated in zebrafish. However, conditional deletion of mouse Hcfc1 in Nkx2.1 + cells increased cell death, reduced Gfap expression, and reduced numbers of GABAergic neurons. Thus, the role of this gene in brain development is not completely understood. Recently, knock-in of both a cblX (HCFC1) and cblX-like (THAP11) allele were created in mice. Knock-in of the cblX-like allele was associated with increased expression of proteins required for ribosome biogenesis. However, the brain phenotypes were not comprehensively studied due to sub-viability. Therefore, a mechanism underlying increased ribosome biogenesis was not described. We used a missense, a nonsense, and two conditional zebrafish alleles to further elucidate this mechanism during brain development. We observed contrasting phenotypes at the level of Akt/mTor activation, the number of radial glial cells, and the expression of two downstream target genes of HCFC1, asxl1 and ywhab. Despite these divergent phenotypes, each allele studied demonstrates with a high degree of face validity when compared to the phenotypes reported in the literature. Collectively, these data suggest that individual mutations in the HCFC1 protein result in differential mTOR activity which may be associated with contrasting cellular phenotypes.


Assuntos
Deficiência Intelectual , Peixe-Zebra , Animais , Camundongos , Códon sem Sentido , Células Ependimogliais/metabolismo , Fenótipo , Proteínas Repressoras/genética , Serina-Treonina Quinases TOR/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747751

RESUMO

Mutation of the GABRA1 gene is associated with neurodevelopmental defects and epilepsy. GABRA1 encodes for the α1 subunit of the gamma-aminobutyric acid type A receptor (GABAAR), which regulates the fast inhibitory impulses of the nervous system. Multiple model systems have previously been developed to understand the function of GABRA1 during development, but these models have produced complex and at times incongruent data. Thus, additional model systems are required to validate and substantiate previously published results. We investigated the behavioral swim patterns associated with a nonsense mutation of the zebrafish gabra1 (sa43718 allele) gene. The sa43718 allele causes a decrease in gabra1 mRNA expression, which is associated with light induced hypermotility, one phenotype associated with seizure like behavior in zebrafish. Mutation of gabra1 was accompanied by decreased mRNA expression of gabra2, gabra3, and gabra5, indicating a reduction in the expression of additional alpha sub-units of the GABAAR. Although multiple sub-units were decreased in total expression, larvae continued to respond to pentylenetetrazole (PTZ) indicating that a residual GABAAR exists in the sa43718 allele. Proteomics analysis demonstrated that nonsense mutation of gabra1 is associated with abnormal expression of proteins that regulate proton transport, ion homeostasis, vesicle transport, and mitochondrial protein complexes. These data support previous studies performed in a zebrafish nonsense allele created by CRISPR/Cas9 and validate that loss of function mutations in the gabra1 gene result in seizure like phenotypes with abnormal function of inhibitory synapses.

15.
ACS Omega ; 8(10): 9486-9498, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936343

RESUMO

The photolytic properties of N-acyl-7-nitroindolines make these compounds attractive as photocleavable protecting groups and "caged" compounds for the light-induced release ("uncaging") of biologically active compounds and as acylating reagents under neutral conditions. However, the synthesis of N-acyl-7-nitroindolines usually requires multiple steps, and the direct acylation of 7-nitroindolines can be quite challenging. 7-Nitroindolines with other types of N-carbonyl-containing groups may also be photoreactive and could potentially be better accessible. Here we demonstrate the short and efficient synthesis of 5-bromo-7-nitroindoline-S-thiocarbamates, a new class of photoreactive compounds, and the study of some of their photochemical and photophysical properties. Using 5-bromo-7-nitroindoline-S-ethylthiocarbamate as a model compound, we show that it can undergo one-photon and two-photon photolysis at 350 and 710 nm, respectively. Our experimental data and quantum chemistry calculations support a photolysis pathway that differs from photolysis pathways previously reported for N-acyl-7-nitroindolines. The photolysis with 350 nm light results in 5-bromo-7-nitrosoindoline, which is in equilibrium with its dimeric form(s), as supported by experiment and theory. This study expands the scope of photoreactive 7-nitroindoline derivatives and informs the development of novel photocleavable compounds.

16.
Neuropharmacology ; 240: 109681, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611823

RESUMO

Nicotine vapor consumption via electronic nicotine delivery systems has increased over the last decade. While prior work has shed light on the health effects of nicotine vapor inhalation, its unique effects on the brain and behavior have not been thoroughly explored. In this study we assessed markers of withdrawal following 14 days of nicotine vapor exposure. For Experiment 1, 21 adult male rats were exposed to ambient air or 6, 12, or 24 mg/mL nicotine vapor for 14 consecutive days. Following exposure on day 14, rats were injected with the nicotinic receptor antagonist mecamylamine (3.0 mg/mL) and assessed for somatic withdrawal signs and anxiety-like behavior in the elevated plus maze. For Experiment 2, 12 adult male rats were tested for intracranial self-stimulation (ICSS) immediately following exposure to vehicle vapor (50%/50%, vegetable glycerin/propylene glycol) or 24 mg/mL nicotine vapor, for 14 consecutive days. ICSS behavior was assessed for an additional 14 days, following cessation of repeated vapor exposure. Results reveal that rats with repeated nicotine vapor exposure display an increase in behavioral indicators of withdrawal following injection of mecamylamine (precipitated withdrawal). Additionally, increases in ICSS stimulation thresholds, indicative of reduced brain reward sensitivity, persist following cessation of repeated nicotine vapor exposure (spontaneous withdrawal). These data suggest that repeated e-cigarette use leads to nicotine dependence and withdrawal that affects behavior and brain reward function. Further characterization of the health effects of nicotine vapor is necessary to improve treatment strategies for nicotine use disorder and public health policies related to novel nicotine delivery systems.

17.
J Fungi (Basel) ; 9(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37998859

RESUMO

Histoplasma capsulatum is the causative agent of histoplasmosis. Treating this fungal infection conventionally has significant limitations, prompting the search for alternative therapies. In this context, fungal extracellular vesicles (EVs) hold relevant potential as both therapeutic agents and targets for the treatment of fungal infections. To explore this further, we conducted a study using pharmacological inhibitors of chitinase (methylxanthines) to investigate their potential to reduce EV release and its subsequent impact on fungal virulence in an in vivo invertebrate model. Our findings revealed that a subinhibitory concentration of the methylxanthine, caffeine, effectively reduces EV release, leading to a modulation of H. capsulatum virulence. To the best of our knowledge, this is the first reported instance of a pharmacological inhibitor that reduces fungal EV release without any observed fungicidal effects.

18.
Emerg Microbes Infect ; 11(1): 2147-2159, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36039908

RESUMO

American tegumentary leishmaniasis (TL) caused by Leishmania braziliensis is characterized by a spectrum of clinical presentations, ranging from localized cutaneous ulcers (CL), mucosal (ML), or disseminated (DL) disease, to a subclinical (SC) asymptomatic form. Current diagnosis based on parasite culture and/or microscopy lacks sensitivity and specificity. Previous studies showed that patients with CL and ML have very high levels of Leishmania-specific anti-α-Gal antibodies. However, the native parasite α-Gal glycotope(s) is(are) still elusive, thus they have not yet been explored for a more accurate TL diagnosis. Using a chemiluminescent immunoassay, we evaluated the seroreactivity of TL patients across its clinical spectrum, and of endemic (EC) and nonendemic healthy controls (NEC) against three synthetic neoglycoproteins (NGP29b, NGP30b, and NGP28b), respectively comprising the L. major-derived type-2 glycoinositolphospholipid (GIPL)-1 (Galfß1,3Manα), GIPL-2 (Galα1,3Galfß1,3Manα), and GIPL-3 (Galα1,6Galα1,3Galfß) glycotopes. Contrary to NGP29b and NGP30b, NGP28b exhibited high sensitivity and specificity to a CL serum pool. More importantly, NGP28b reacted strongly and specifically with individual sera from distinct clinical forms of TL, especially with SC sera, with 94% sensitivity and 97% specificity, by post-two-graph receiver-operating characteristic curve analysis. Contrary to NGP29b, NGP28b showed low cross-reactivity with Chagas disease and control (NEC/EC) sera. Additionally, seroreactivity of CL patients against NGP28b was significantly decreased after successful chemotherapy, indicating that L. braziliensis-specific anti-α-Gal antibodies may serve as an early biomarker of cure in CL. Our data also points towards the applicability of L. major type-2 GIPL-3-derived Galα1,6Galα1,3Galfß glycotope for the serological diagnosis of American TL, particularly of the subclinical form.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Biomarcadores , Glicoproteínas , Humanos , Testes Sorológicos
19.
JACS Au ; 1(8): 1275-1287, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34467365

RESUMO

All healthy humans have high levels of natural anti-α-galactosyl (α-Gal) antibodies (elicited by yet uncharacterized glycotopes), which may play important roles in immunoglycomics: (a) potential protection against certain parasitic and viral zoonotic infections; (b) targeting of α-Gal-engineered cancer cells; (c) aiding in tissue repair; and (d) serving as adjuvants in α-Gal-based vaccines. Patients with certain protozoan infections have specific anti-α-Gal antibodies, elicited against parasite-derived α-Gal-bearing glycotopes. These glycotopes, however, remain elusive except for the well-characterized glycotope Galα1,3Galß1,4GlcNAcα, expressed by Trypanosoma cruzi. The discovery of new parasitic glycotopes is greatly hindered by the enormous structural diversity of cell-surface glycans and the technical challenges of classical immunoglycomics, a top-down approach from cultivated parasites to isolated glycans. Here, we demonstrate that reversed immunoglycomics, a bottom-up approach, can identify parasite species-specific α-Gal-bearing glycotopes by probing synthetic oligosaccharides on neoglycoproteins. This method was tested here seeking to identify as-yet unknown glycotopes specific for Leishmania major, the causative agent of Old-World cutaneous leishmaniasis (OWCL). Neoglycoproteins decorated with synthetic α-Gal-containing oligosaccharides derived from L. major glycoinositolphospholipids served as antigens in a chemiluminescent enzyme-linked immunosorbent assay using sera from OWCL patients and noninfected individuals. Receiver-operating characteristic analysis identified Galpα1,3Galfß and Galpα1,3Galfß1,3Manpα glycotopes as diagnostic biomarkers for L. major-caused OWCL, which can distinguish with 100% specificity from heterologous diseases and L. tropica-caused OWCL. These glycotopes could prove useful in the development of rapid α-Gal-based diagnostics and vaccines for OWCL. Furthermore, this method could help unravel cryptic α-Gal-glycotopes of other protozoan parasites and enterobacteria that elicit the natural human anti-α-Gal antibodies.

20.
mBio ; 13(1): e0371821, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35164559

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) extensively N-glycosylates its spike proteins, which are necessary for host cell invasion and the target of both vaccines and immunotherapies. These N-glycans are predicted to modulate spike binding to the host receptor by stabilizing its open conformation and host immunity evasion. Here, we investigated the essentiality of both the host N-glycosylation pathway and SARS-CoV-2 N-glycans for infection. Ablation of host N-glycosylation using RNA interference or inhibitors, including FDA-approved drugs, reduced the spread of the infection, including that of variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Under these conditions, cells produced fewer virions and some completely lost their infectivity. Furthermore, partial enzymatic deglycosylation of intact virions showed that surface-exposed N-glycans are critical for cell invasion. Altogether, we propose protein N-glycosylation as a targetable pathway with clinical potential for treatment of COVID-19. IMPORTANCE The coronavirus SARS-CoV-2 uses its spike surface proteins to infect human cells. Spike proteins are heavily modified with several N-glycans, which are predicted to modulate their function. In this work, we show that interfering with either the synthesis or attachment of spike N-glycans significantly reduces the spread of SARS-CoV-2 infection in vitro, including that of several variants. As new SARS-CoV-2 variants, with various degrees of resistance against current vaccines, are likely to continue appearing, halting virus glycosylation using repurposed human drugs could result in a complementary strategy to reducing the spread of COVID-19 worldwide.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/metabolismo , COVID-19/prevenção & controle , Glicosilação , Polissacarídeos/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA