Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Virol ; 165(6): 1485-1488, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32248294

RESUMO

The GenBank database contains over 2580 complete genome sequences from bacteriophages. However, limited reports are available concerning phages can that lyse members of Pseudomonas syringae, although this is a widespread bacterial species that can infect almost 200 plant species. In the present study, we isolated and characterized a new Siphoviridae phage, named "Pseudomonas phage vB_PsyS_Phobos" (for brevity, referred to here as Phobos). To our knowledge, this is one of the first genome sequences reported for a phage with lytic activity against P. syringae pv. syringae. The genome of Phobos is dsDNA of 56,734 bp with a GC content of 63.3%, containing 65 ORFs. Genome analysis revealed that Phobos is a novel lytic phage with unique genomic features and low similarity to other phages, suggesting that Phobos represents a new phage genus. Genome sequencing did not reveal sequences with significant similarity to known virulence factors, antibiotic resistance genes, potential immunoreactive allergens, or lysogeny-related proteins, suggesting suggests that phage Phobos is strictly lytic. Therefore, Phobos may be suitable for formulation as a biocontrol agent against P. syringae pv. syringae.


Assuntos
Fagos de Pseudomonas/genética , Pseudomonas syringae/virologia , Siphoviridae/genética , Composição de Bases , DNA Viral/genética , Fases de Leitura Aberta , Fagos de Pseudomonas/isolamento & purificação , Fagos de Pseudomonas/ultraestrutura , Análise de Sequência de DNA , Siphoviridae/isolamento & purificação , Siphoviridae/ultraestrutura , Sequenciamento Completo do Genoma
2.
Phytopathology ; 110(10): 1620-1622, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32378452

RESUMO

Black Sigatoka disease, caused by the fungus Pseudocercospora fijiensis, is one of the most devastating diseases of banana around the world. Fungicide applications are the primary tool used to manage black Sigatoka, but fungicide resistance in P. fijiensis, as in other fungal pathogens, is one of the major limitations in the efficient management and prevention of this disease. In the current study, we present the draft genome of P. fijiensis strain IIL-20, the first genomic sequence published from a strain of this fungus isolated in North America. Bioinformatic analysis showed putative genes involved in fungus virulence and fungicide resistance. These findings may lead us to a better understanding of the molecular pathogenesis of this fungal pathogen and also to the discovery of the mechanisms conferring fungicide resistance.


Assuntos
Ascomicetos/genética , Fungicidas Industriais/farmacologia , Musa , América do Norte , Doenças das Plantas
3.
Int J Environ Health Res ; 28(1): 43-54, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29249164

RESUMO

This study was performed to evaluate in vitro the adherence and invasiveness capacity of Salmonella Oranienburg and Saintpaul (isolated from river water) exposed to laboratory and river water growth conditions and inoculated into epithelial HEp-2 cell. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed lower ability to adhere and invade epithelial HEp-2 cells under both growth conditions as compared to Salmonella Typhimurium reference strain. S. Oranienburg adhesion capacity was not affected by the growth conditions, while S. Saintpaul exposed to river water significantly (p < 0.05) decreased its adhesion capacity by 75.7 %. On the contrary, S. Oranienburg exposed to river water reduced its invasion efficiency by 80 %, whereas S. Saintpaul showed no differences between growth conditions. In conclusion, this study suggests that the exposure to non-host conditions, such as river water, adversely affects the adhesion and invasiveness of Salmonella serotypes differently, impacting on their ability to re-enter a new host.


Assuntos
Rios/microbiologia , Salmonella/patogenicidade , Aderência Bacteriana , Morte Celular , Linhagem Celular , Genes Bacterianos , Humanos , Salmonella/genética , Salmonella/isolamento & purificação , Salmonella/fisiologia , Virulência
4.
Int J Environ Health Res ; 27(4): 252-263, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28565917

RESUMO

Long-term exposure to river water by non-indigenous micro-organisms such as Salmonella may affect metabolic adaptation to carbon sources. This study was conducted to determine differences in carbon source utilization of Salmonella Oranienburg and Salmonella Saintpaul (isolated from tropical river water) as well as the control strain Salmonella Typhimurium exposed to laboratory, river water, and host cells (Hep-2 cell line) growth conditions. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed better ability for carbon source utilization under the three growth conditions evaluated; however, S. Oranienburg showed the fastest and highest utilization on different carbon sources, including D-Glucosaminic acid, N-acetyl-D-Glucosamine, Glucose-1-phosphate, and D-Galactonic acid, while Salmonella Saintpaul and S. Typhimurium showed a limited utilization of carbon sources. In conclusion, this study suggests that environmental Salmonella strains show better survival and preconditioning abilities to external environments than the control strain based on their plasticity on diverse carbon sources use.


Assuntos
Carbono/metabolismo , Rios/microbiologia , Salmonella enterica/metabolismo , Salmonella enterica/genética , Sorogrupo
5.
Genome Announc ; 1(6)2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24336367

RESUMO

Salmonella is a pathogen of worldwide importance, causing disease in a vast range of hosts, including humans. We report the genome sequence of Salmonella enterica subsp. enterica serotype Saintpaul strain S-70, isolated from an aquatic environment.

6.
Genome Announc ; 1(6)2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24336368

RESUMO

Salmonella is a widespread microorganism and a common causative agent of food-borne illnesses. Salmonella enterica subsp. enterica serotype Oranienburg is highly prevalent in surface water from tropical ecosystems and is not commonly related to illnesses. Here, we report the first genome sequence of Salmonella Oranienburg strain S-76, isolated from an aquatic environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA