Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Syst Biol ; 10: 735, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24987114

RESUMO

Given the vast behavioral repertoire and biological complexity of even the simplest organisms, accurately predicting phenotypes in novel environments and unveiling their biological organization is a challenging endeavor. Here, we present an integrative modeling methodology that unifies under a common framework the various biological processes and their interactions across multiple layers. We trained this methodology on an extensive normalized compendium for the gram-negative bacterium Escherichia coli, which incorporates gene expression data for genetic and environmental perturbations, transcriptional regulation, signal transduction, and metabolic pathways, as well as growth measurements. Comparison with measured growth and high-throughput data demonstrates the enhanced ability of the integrative model to predict phenotypic outcomes in various environmental and genetic conditions, even in cases where their underlying functions are under-represented in the training set. This work paves the way toward integrative techniques that extract knowledge from a variety of biological data to achieve more than the sum of their parts in the context of prediction, analysis, and redesign of biological systems.


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Biologia de Sistemas/métodos , Adaptação Fisiológica , Algoritmos , Escherichia coli/fisiologia , Redes Reguladoras de Genes , Redes e Vias Metabólicas , Modelos Biológicos , Fenótipo , Estresse Fisiológico
2.
Astrobiology ; 20(12): 1465-1475, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320780

RESUMO

The discovery of potentially habitable planets around the ultracool dwarf star Trappist-1 naturally poses the question: could Trappist-1 planets be home to life? These planets orbit very close to the host star and are most susceptible to the UV radiation emitted by the intense and frequent flares of Trappist-1. Here, we calculate the UV spectra (100-450 nm) of a superflare observed on Trappist-1 with the K2 mission. We couple radiative transfer models to this spectra to estimate the UV surface flux on planets in the habitable zone of Trappist-1 (planets e, f, and g), assuming atmospheric scenarios based on a prebiotic and an oxygenic atmosphere. We quantify the impact of the UV radiation on living organisms on the surface and on a hypothetical planet ocean. Finally, we find that for non-oxygenic planets, UV-resistant life-forms would survive on the surface of planets f and g. Nevertheless, more fragile organisms (i.e., Escherichia coli) could be protected from the hazardous UV effects at ocean depths greater than 8 m. If the planets have an ozone layer, any life-forms studied here would survive in the habitable zone planets.


Assuntos
Atmosfera , Meio Ambiente Extraterreno , Oceanos e Mares , Planetas , Exobiologia , Ozônio Estratosférico , Raios Ultravioleta
3.
BMC Genomics ; 9: 548, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19019209

RESUMO

BACKGROUND: The basidiomycete fungus Moniliophthora perniciosa is the causal agent of Witches' Broom Disease (WBD) in cacao (Theobroma cacao). It is a hemibiotrophic pathogen that colonizes the apoplast of cacao's meristematic tissues as a biotrophic pathogen, switching to a saprotrophic lifestyle during later stages of infection. M. perniciosa, together with the related species M. roreri, are pathogens of aerial parts of the plant, an uncommon characteristic in the order Agaricales. A genome survey (1.9x coverage) of M. perniciosa was analyzed to evaluate the overall gene content of this phytopathogen. RESULTS: Genes encoding proteins involved in retrotransposition, reactive oxygen species (ROS) resistance, drug efflux transport and cell wall degradation were identified. The great number of genes encoding cytochrome P450 monooxygenases (1.15% of gene models) indicates that M. perniciosa has a great potential for detoxification, production of toxins and hormones; which may confer a high adaptive ability to the fungus. We have also discovered new genes encoding putative secreted polypeptides rich in cysteine, as well as genes related to methylotrophy and plant hormone biosynthesis (gibberellin and auxin). Analysis of gene families indicated that M. perniciosa have similar amounts of carboxylesterases and repertoires of plant cell wall degrading enzymes as other hemibiotrophic fungi. In addition, an approach for normalization of gene family data using incomplete genome data was developed and applied in M. perniciosa genome survey. CONCLUSION: This genome survey gives an overview of the M. perniciosa genome, and reveals that a significant portion is involved in stress adaptation and plant necrosis, two necessary characteristics for a hemibiotrophic fungus to fulfill its infection cycle. Our analysis provides new evidence revealing potential adaptive traits that may play major roles in the mechanisms of pathogenicity in the M. perniciosa/cacao pathosystem.


Assuntos
Agaricales/genética , Cacau/microbiologia , Genoma Fúngico , Doenças das Plantas/microbiologia , Agaricales/patogenicidade , Análise por Conglomerados , DNA Fúngico/genética , Etiquetas de Sequências Expressas , Genes Fúngicos , Genômica , Modelos Genéticos , Família Multigênica , Alinhamento de Sequência , Análise de Sequência de DNA
4.
Astrobiology ; 18(11): 1414-1424, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30230354

RESUMO

Kepler-96 is an active solar-type star harboring a Super-Earth planet in close orbit. Its age of 2.3 gigayears is the same as the Sun when there was a considerable increase of oxygen in Earth's atmosphere due to micro-organisms living in the ocean. We present the analysis of superflares seen on the transit light curves of Kepler-96b. The model used here simulates the planetary transit in a flaring star. By fitting the observational data with this model, it is possible to infer the physical properties of the flares, such as their duration and the energy released. We found three flares within the energy range of superflares, where the biggest superflare observed was found to have an energy of 1.81 × 1029 J (1.81 × 1035 ergs). The goal is to analyze the biological impact of these superflares on a hypothetical Earth in the habitable zone of Kepler-96, assuming this planet has protection through different scenarios: an Archean and present-day atmospheres. Also, we compute the attenuation of the flare ultraviolet (UV) radiation through an Archean ocean. The conclusion is that considering the increase in the UV flux by the strongest superflare emission, Escherichia coli and Deinococcus radiodurans could survive on the surface of the planet only if there was an ozone layer present on the planet atmosphere. However, they could escape from the hazardous UV effects at a depth of 28 and 12 m below the ocean surface, respectively. For smaller superflares contribution, D. radiodurans could survive in the surface even in an Archean atmosphere with no ozone.


Assuntos
Planeta Terra , Exobiologia , Meio Ambiente Extraterreno , Ozônio Estratosférico/análise , Raios Ultravioleta , Deinococcus/fisiologia , Escherichia coli/fisiologia , Oceanos e Mares , Propriedades de Superfície
5.
mBio ; 9(5)2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254120

RESUMO

Throughout history, the yeast Saccharomyces cerevisiae has played a central role in human society due to its use in food production and more recently as a major industrial and model microorganism, because of the many genetic and genomic tools available to probe its biology. However, S. cerevisiae has proven difficult to engineer to expand the carbon sources it can utilize, the products it can make, and the harsh conditions it can tolerate in industrial applications. Other yeasts that could solve many of these problems remain difficult to manipulate genetically. Here, we engineered the thermotolerant yeast Kluyveromyces marxianus to create a new synthetic biology platform. Using CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats with Cas9)-mediated genome editing, we show that wild isolates of K. marxianus can be made heterothallic for sexual crossing. By breeding two of these mating-type engineered K. marxianus strains, we combined three complex traits-thermotolerance, lipid production, and facile transformation with exogenous DNA-into a single host. The ability to cross K. marxianus strains with relative ease, together with CRISPR-Cas9 genome editing, should enable engineering of K. marxianus isolates with promising lipid production at temperatures far exceeding those of other fungi under development for industrial applications. These results establish K. marxianus as a synthetic biology platform comparable to S. cerevisiae, with naturally more robust traits that hold potential for the industrial production of renewable chemicals.IMPORTANCE The yeast Kluyveromyces marxianus grows at high temperatures and on a wide range of carbon sources, making it a promising host for industrial biotechnology to produce renewable chemicals from plant biomass feedstocks. However, major genetic engineering limitations have kept this yeast from replacing the commonly used yeast Saccharomyces cerevisiae in industrial applications. Here, we describe genetic tools for genome editing and breeding K. marxianus strains, which we use to create a new thermotolerant strain with promising fatty acid production. These results open the door to using K. marxianus as a versatile synthetic biology platform organism for industrial applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Engenharia Genética , Kluyveromyces/genética , Biologia Sintética/métodos , Biotecnologia , Proteína 9 Associada à CRISPR/genética , Genes Fúngicos Tipo Acasalamento/genética , Kluyveromyces/metabolismo , Metabolismo dos Lipídeos , Saccharomyces cerevisiae/genética , Temperatura , Termotolerância
6.
Curr Opin Biotechnol ; 38: 79-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26874259

RESUMO

The production of bioenergy from plant biomass previously relied on using microorganisms that rapidly and efficiently convert simple sugars into fuels and chemicals. However, to exploit the far more abundant carbon fixed in plant cell walls, future industrial production hosts will need to be engineered to leverage the most efficient biochemical pathways and most robust traits that can be found in nature. The CRISPR-Cas9 genome editing technology now enables writing the genome at will, which will allow biotechnology to become an 'information science.' This review covers recent advances in using CRISPR-Cas9 to engineer the genomes of a wide variety of organisms that could be use in the industrial production of biofuels and renewable chemicals.


Assuntos
Biotecnologia/métodos , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes/métodos , Biocombustíveis , Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma
7.
Biotechnol Rep (Amst) ; 9: 53-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28352592

RESUMO

Economical biofuel production from plant biomass requires the conversion of both cellulose and hemicellulose in the plant cell wall. The best industrial fermentation organism, the yeast Saccharomyces cerevisiae, has been developed to utilize xylose by heterologously expressing either a xylose reductase/xylitol dehydrogenase (XR/XDH) pathway or a xylose isomerase (XI) pathway. Although it has been proposed that the optimal means for fermenting xylose into biofuels would use XI instead of the XR/XDH pathway, no clear comparison of the best publicly-available yeast strains engineered to use XR/XDH or XI has been published. We therefore compared two of the best-performing engineered yeast strains in the public domain-one using the XR/XDH pathway and another using XI-in anaerobic xylose fermentations. We find that, regardless of conditions, the strain using XR/XDH has substantially higher productivity compared to the XI strain. By contrast, the XI strain has better yields in nearly all conditions tested.

8.
Elife ; 42015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25647728

RESUMO

Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production.


Assuntos
Biocombustíveis , Parede Celular/metabolismo , Neurospora crassa/metabolismo , Plantas/metabolismo , Xilose/metabolismo
9.
Biotechnol Biofuels ; 7(1): 126, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25435910

RESUMO

BACKGROUND: Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison with those of glucose. Systems biology methods, used to understand biological networks, hold promise for rational microbial strain development in metabolic engineering. Here, we present a systematic strategy for optimizing non-native sugar fermentation by recombinant S. cerevisiae, using cellobiose as a model. RESULTS: Differences in gene expression between cellobiose and glucose metabolism revealed by RNA deep sequencing indicated that cellobiose metabolism induces mitochondrial activation and reduces amino acid biosynthesis under fermentation conditions. Furthermore, glucose-sensing and signaling pathways and their target genes, including the cAMP-dependent protein kinase A pathway controlling the majority of glucose-induced changes, the Snf3-Rgt2-Rgt1 pathway regulating hexose transport, and the Snf1-Mig1 glucose repression pathway, were at most only partially activated under cellobiose conditions. To separate correlations from causative effects, the expression levels of 19 transcription factors perturbed under cellobiose conditions were modulated, and the three strongest promoters under cellobiose conditions were applied to fine-tune expression of the heterologous cellobiose-utilizing pathway. Of the changes in these 19 transcription factors, only overexpression of SUT1 or deletion of HAP4 consistently improved cellobiose fermentation. SUT1 overexpression and HAP4 deletion were not synergistic, suggesting that SUT1 and HAP4 may regulate overlapping genes important for improved cellobiose fermentation. Transcription factor modulation coupled with rational tuning of the cellobiose consumption pathway significantly improved cellobiose fermentation. CONCLUSIONS: We used systems-level input to reveal the regulatory mechanisms underlying suboptimal metabolism of the non-glucose sugar cellobiose. By identifying key transcription factors that cause suboptimal cellobiose fermentation in engineered S. cerevisiae, and by fine-tuning the expression of a heterologous cellobiose consumption pathway, we were able to greatly improve cellobiose fermentation by engineered S. cerevisiae. Our results demonstrate a powerful strategy for applying systems biology methods to rapidly identify metabolic engineering targets and overcome bottlenecks in performance of engineered strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA