Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 922: 174836, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306000

RESUMO

Cannabichromene (CBC) and cannabichromenic acid (CBCA) are cannabis constituents currently under evaluation for their therapeutic potential, but their pharmacological properties have not been thoroughly investigated. The most studied ATP-binding cassette (ABC) transporters, ABC subfamily G member 2 (ABCG2) and ABC subfamily B member 1 (ABCB1) limit absorption of substrate drugs in the gut and brain. Moreover, inhibitors of these proteins can lead to clinically significant drug-drug interactions (DDIs). The current study sought to examine whether CBC and CBCA affect ABCB1 and ABCG2 to advance their basic pharmacological characterisation. The plant cannabinoids CBC and CBCA were screened in vitro in a bidirectional transport assay to determine whether they were substrates and/or inhibitors of ABCB1 and ABCG2. Transwell assays with polarized epithelial Madin-Darby Canine Kidney II (MDCK) cells expressing ABCB1 or ABCG2 were used. Samples were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS). CBCA was found to be an ABCB1 substrate, but not an ABCG2 substrate. CBC was not a substrate of either transporter. Neither CBCA nor CBC inhibited ABCB1 transport of prazosin or ABCG2 transport of digoxin. In silico molecular docking suggested CBCA binds ABCB1 in the access tunnel and the central binding pocket. CBC, an agent with anticonvulsant, anti-inflammatory and anti-depressant properties, is not a substrate or inhibitor of ABCB1 or ABCG2, which is favourable to its therapeutic development. CBCA is an ABCB1 substrate in vitro which might contribute to its poor absorption. These findings provide important basic pharmacological data to assist the therapeutic development of these cannabis constituents.


Assuntos
Canabinoides , Cannabis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Canabinoides/farmacologia , Cannabis/metabolismo , Cromatografia Líquida , Cães , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem
2.
Cannabis Cannabinoid Res ; 7(3): 304-317, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33998860

RESUMO

Introduction: Legalization of medicinal cannabis around the world has led to an increase in the use of commercial cannabis-based products in the community. These cannabis-based products are being used in combination with conventional drugs to treat a variety of health conditions. Moreover, recreational cannabis-based products may be used in combination with other drugs. In this setting, there is increased potential for drug-drug interactions (DDIs) involving commercial cannabis-based products. Since DDIs can lead to serious adverse events, drug regulatory bodies require that every investigational drug be evaluated for DDI potential at metabolic enzymes and transporters. However, this seldom occurs for cannabis-based products due to legislation in many jurisdictions allowing a direct pathway to market. This study aimed to examine the inhibitory potential of three commercially available cannabis-based products at human ATP-binding cassette (ABC) and solute-carrier (SLC) transporters. Materials and Methods: Three commercial cannabis-based products (Spectrum Yellow™, Tweed Argyle, and Spectrum Red™) that contain differing concentrations of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) were evaluated for DDI potential at 12 drug transporters. HEK293 cells or vesicles expressing human ABC transporters (ABCB1, ABCC2, ABCG2, or ABCB11) and SLC transporters (SLC22A1, SLC22A2, SLC22A6, SLC22A8, SLCO1B1, SLCO1B3, SLC47A1, and SLC47A2) were used to measure transporter function. Results: Spectrum Yellow and Tweed Argyle inhibited ABCG2 transporter function. The IC50 value of Spectrum Yellow based on CBD and Δ9-THC content was 4.5 µM for CBD and 0.20 µM for Δ9-THC, and the IC50 value of Tweed Argyle was 9.3 µM for CBD and 6.0 µM for Δ9-THC. Tweed Argyle also inhibited ABCB11 transporter function with an IC50 value of 11.9 µM for CBD and 7.7 µM for Δ9-THC. SLC22A6, SLC22A1, SLC22A2, SLCO1B1, and SLCO1B3 transporter functions were modestly inhibited by high concentrations of the cannabis-based products. The three cannabis-based products did not inhibit ABCB1, ABCC2, SLC47A1, SLC47A2, or SLC22A8 transporters. Discussion: Novel findings were that the cannabis-based products inhibited ABCB11, SLC22A6, SLC22A1, SLC22A2, SLCO1B1, and SLCO1B3 (although modestly in most instances). Spectrum Yellow and Tweed Argyle potently inhibited ABCG2, and future in vivo DDI studies could be conducted to assess whether cannabis products affect the pharmacokinetics of medications that are ABCG2 substrates.


Assuntos
Cannabis , Alucinógenos , Trifosfato de Adenosina , Agonistas de Receptores de Canabinoides , Cannabis/química , Dronabinol/farmacocinética , Células HEK293 , Alucinógenos/farmacologia , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado , Proteínas de Membrana Transportadoras/metabolismo
3.
Sci Rep ; 11(1): 14948, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294753

RESUMO

Cannabis is a complex mixture of hundreds of bioactive molecules. This provides the potential for pharmacological interactions between cannabis constituents, a phenomenon referred to as "the entourage effect" by the medicinal cannabis community. We hypothesize that pharmacokinetic interactions between cannabis constituents could substantially alter systemic cannabinoid concentrations. To address this hypothesis we compared pharmacokinetic parameters of cannabinoids administered orally in a cannabis extract to those administered as individual cannabinoids at equivalent doses in mice. Astonishingly, plasma cannabidiolic acid (CBDA) concentrations were 14-times higher following administration in the cannabis extract than when administered as a single molecule. In vitro transwell assays identified CBDA as a substrate of the drug efflux transporter breast cancer resistance protein (BCRP), and that cannabigerol and Δ9-tetrahydrocannabinol inhibited the BCRP-mediated transport of CBDA. Such a cannabinoid-cannabinoid interaction at BCRP transporters located in the intestine would inhibit efflux of CBDA, thus resulting in increased plasma concentrations. Our results suggest that cannabis extracts provide a natural vehicle to substantially enhance plasma CBDA concentrations. Moreover, CBDA might have a more significant contribution to the pharmacological effects of orally administered cannabis extracts than previously thought.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Canabinoides/administração & dosagem , Cannabis/química , Óleos de Plantas/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Canabinoides/sangue , Canabinoides/química , Canabinoides/farmacocinética , Suplementos Nutricionais , Cães , Células Madin Darby de Rim Canino , Camundongos , Modelos Animais , Óleos de Plantas/química , Óleos de Plantas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA