Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Breast Cancer Res ; 17: 66, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25968050

RESUMO

INTRODUCTION: Tumor cells can effectively be killed by heat, e.g. by using magnetic hyperthermia. The main challenge in the field, however, is the generation of therapeutic temperatures selectively in the whole tumor region. We aimed to improve magnetic hyperthermia of breast cancer by using innovative nanoparticles which display a high heating potential and are functionalized with a cell internalization and a chemotherapeutic agent to increase cell death. METHODS: The superparamagnetic iron oxide nanoparticles (MF66) were electrostatically functionalized with either Nucant multivalent pseudopeptide (N6L; MF66-N6L), doxorubicin (DOX; MF66-DOX) or both (MF66-N6LDOX). Their cytotoxic potential was assessed in a breast adenocarcinoma cell line MDA-MB-231. Therapeutic efficacy was analyzed on subcutaneous MDA-MB-231 tumor bearing female athymic nude mice. RESULTS: All nanoparticle variants showed an excellent heating potential around 500 W/g Fe in the alternating magnetic field (AMF, conditions: H=15.4 kA/m, f=435 kHz). We could show a gradual inter- and intracellular release of the ligands, and nanoparticle uptake in cells was increased by the N6L functionalization. MF66-DOX and MF66-N6LDOX in combination with hyperthermia were more cytotoxic to breast cancer cells than the respective free ligands. We observed a substantial tumor growth inhibition (to 40% of the initial tumor volume, complete tumor regression in many cases) after intratumoral injection of the nanoparticles in vivo. The proliferative activity of the remaining tumor tissue was distinctly reduced. CONCLUSION: The therapeutic effects of breast cancer magnetic hyperthermia could be strongly enhanced by the combination of MF66 functionalized with N6L and DOX and magnetic hyperthermia. Our approach combines two ways of tumor cell killing (magnetic hyperthermia and chemotherapy) and represents a straightforward strategy for translation into the clinical practice when injecting nanoparticles intratumorally.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Compostos Férricos/química , Hipertermia Induzida/métodos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Animais , Apoptose , Neoplasias da Mama/diagnóstico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Hipertermia Induzida/efeitos adversos , Nanopartículas Metálicas/efeitos adversos , Camundongos , Camundongos Nus , Microtomografia por Raio-X , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Pharm Res ; 31(12): 3274-88, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24890197

RESUMO

PURPOSE: Tumor cells can be effectively inactivated by heating mediated by magnetic nanoparticles. However, optimized nanomaterials to supply thermal stress inside the tumor remain to be identified. The present study investigates the therapeutic effects of magnetic hyperthermia induced by superparamagnetic iron oxide nanoparticles on breast (MDA-MB-231) and pancreatic cancer (BxPC-3) xenografts in mice in vivo. METHODS: Superparamagnetic iron oxide nanoparticles, synthesized either via an aqueous (MF66; average core size 12 nm) or an organic route (OD15; average core size 15 nm) are analyzed in terms of their specific absorption rate (SAR), cell uptake and their effectivity in in vivo hyperthermia treatment. RESULTS: Exceptionally high SAR values ranging from 658 ± 53 W*gFe (-1) for OD15 up to 900 ± 22 W*gFe (-1) for MF66 were determined in an alternating magnetic field (AMF, H = 15.4 kA*m(-1) (19 mT), f = 435 kHz). Conversion of SAR values into system-independent intrinsic loss power (ILP, 6.4 ± 0.5 nH*m(2)*kg(-1) (OD15) and 8.7 ± 0.2 nH*m(2)*kg(-1) (MF66)) confirmed the markedly high heating potential compared to recently published data. Magnetic hyperthermia after intratumoral nanoparticle injection results in dramatically reduced tumor volume in both cancer models, although the applied temperature dosages measured as CEM43T90 (cumulative equivalent minutes at 43°C) are only between 1 and 24 min. Histological analysis of magnetic hyperthermia treated tumor tissue exhibit alterations in cell viability (apoptosis and necrosis) and show a decreased cell proliferation. CONCLUSIONS: Concluding, the studied magnetic nanoparticles lead to extensive cell death in human tumor xenografts and are considered suitable platforms for future hyperthermic studies.


Assuntos
Campos Eletromagnéticos , Hipertermia Induzida , Neoplasias Experimentais/terapia , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Compostos Férricos , Humanos , Antígeno Ki-67 , Camundongos , Nanopartículas , Neoplasias Experimentais/sangue , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Biomed Mater Res A ; 106(11): 2910-2922, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30447103

RESUMO

Increasing cell adhesion on implant surfaces is an issue of high biomedical importance. Early colonization with endogenous cells reduces the risk of bacterial contamination and enhances the integration of an implant into the diverse cellular tissues surrounding it. In vivo integration of implants is controlled by a complex spatial and temporal interplay of cytokines and adhesive molecules. The concept of a multi-biofunctionalized TiO2 surface for stimulating bone and soft tissue growth is presented here. All supramolecular architectures were built with a biotin-streptavidin coupling system. Biofunctionalization of TiO2 with immobilized FGF-2 and heparin could be shown to selectively increase the proliferation of fibroblasts while immobilized BMP-2 only stimulated the growth of osteoblasts. Furthermore, TiO2 surfaces biofunctionalized with either the BMP-2 or BMP-2/6 growth factor and the cell adhesion-enhancing protein fibronectin showed higher osteoblast adhesion than a TiO2 surface functionalized with only one of these proteins. In conclusion, the presented immobilization strategy is applicable in vivo for a selective surface coating of implants in both hard and connective tissue. The combined immobilization of different extracellular proteins on implants has the potential to further influence cell-specific reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2910-2922, 2018.


Assuntos
Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 6/química , Adesão Celular , Proliferação de Células , Materiais Revestidos Biocompatíveis/química , Fator 2 de Crescimento de Fibroblastos/química , Titânio/química , Linhagem Celular , Fibroblastos/citologia , Humanos , Proteínas Imobilizadas/química , Modelos Moleculares , Osteoblastos/citologia , Próteses e Implantes , Propriedades de Superfície
4.
J Biomed Mater Res A ; 106(3): 758-768, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29055106

RESUMO

Streptavidin is a 58 kDa tetrameric protein with the highest known affinity to biotin with a wide range of applications in bionanotechnology and molecular biology. Dissolved streptavidin is stable at a broad range of temperature, pH, proteolytic enzymes and exhibits low non-specific binding. In this study, a streptavidin monolayer was assembled directly on a biotinylated TiO2 -surface to investigate its stability against proteolytic digestion and its suppression of initial bacterial adsorption of Escherichia coli, Bacillus subtilis, and Streptococcus intermedius. In contrast to nonmodified TiO2 surfaces, streptavidin-coated substrates showed only a negligible non-specific protein adsorption at physiological protein concentrations as well as a significantly reduced bacterial adhesion. The antiadhesive properties were demonstrated to be the main reason for the suppression of bacterial adhesion, which makes this approach a promising option for future surface biofunctionalization applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 758-768, 2018.


Assuntos
Bactérias/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/farmacologia , Proteínas/química , Estreptavidina/química , Adsorção , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Biotinilação , Contagem de Colônia Microbiana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Implantes Experimentais , Muramidase/química , Proteólise/efeitos dos fármacos , Soroalbumina Bovina/química , Streptococcus/efeitos dos fármacos , Streptococcus/crescimento & desenvolvimento , Streptococcus/fisiologia , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA