Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38634491

RESUMO

Quantum chemistry is one of the most promising applications for which quantum computing is expected to have a significant impact. Despite considerable research in the field of electronic structure, calculating the vibrational properties of molecules on quantum computers remains a relatively unexplored field. In this work, we develop a vibrational Adaptive Derivative-Assembled Pseudo-Trotter Variational Quantum Eigensolver (vADAPT-VQE) formalism based on an infinite product representation (IPR) of anti-Hermitian excitation operators of the Full Vibrational Configuration Interaction (FVCI) wavefunction, which allows for preparing eigenstates of vibrational Hamiltonians on quantum computers. In order to establish the vADAPT-VQE algorithm using the IPR, we study the exactness of disentangled Unitary Vibrational Coupled Cluster (dUVCC) theory and show that dUVCC can formally represent the FVCI wavefunction in an infinite expansion. To investigate the performance of the vADAPT-VQE algorithm, we numerically study whether the vADAPT-VQE algorithm generates a sequence of operators that may represent the FVCI wavefunction. Our numerical results indicate frequent appearance of critical points in the wavefunction preparation using vADAPT-VQE. These results imply that one may encounter diminishing usefulness when preparing vibrational wavefunctions on quantum computers using vADAPT-VQE and that additional studies are required to find methods that can circumvent this behavior.

2.
J Chem Phys ; 144(5): 054102, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26851903

RESUMO

The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the RI approximation is utilized in each fragment calculation. The individual fragment calculations scale with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional RI-MP2 implementation.

3.
J Chem Phys ; 144(16): 164116, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27131540

RESUMO

The theoretical foundation for solving coupled cluster singles and doubles (CCSD) amplitude equations to a desired precision in terms of independent fragment calculations using restricted local orbital spaces is reinvestigated with focus on the individual error sources. Four different error sources are identified theoretically and numerically and it is demonstrated that, for practical purposes, local orbital spaces for CCSD calculations can be identified from calculations at the MP2 level. The development establishes a solid theoretical foundation for local CCSD calculations for the independent fragments, and thus for divide-expand-consolidate coupled cluster calculations for large molecular systems with rigorous error control. Based on this theoretical foundation, we have developed an algorithm for determining the orbital spaces needed for obtaining the single fragment energies to a requested precision and numerically demonstrated the robustness and precision of this algorithm.

4.
J Chem Phys ; 142(11): 114116, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25796240

RESUMO

We propose the Same Number Of Optimized Parameters (SNOOP) scheme as an alternative to the counterpoise method for treating basis set superposition errors in calculations of intermolecular interaction energies. The key point of the SNOOP scheme is to enforce that the number of optimized wave function parameters for the noninteracting system is the same as for the interacting system. This ensures a delicate balance between the quality of the monomer and dimer finite basis set calculations. We compare the SNOOP scheme to the uncorrected and counterpoise schemes theoretically as well as numerically. Numerical results for second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster with single, double, and approximate triple excitations (CCSD(T)) show that the SNOOP scheme in general outperforms the uncorrected and counterpoise approaches. Furthermore, we show that SNOOP interaction energies calculated using a given basis set are of similar quality as those determined by basis set extrapolation of counterpoise-corrected results obtained at a similar computational cost.


Assuntos
Modelos Moleculares , Algoritmos , Simulação por Computador , Dimerização , Ligação de Hidrogênio
5.
J Chem Theory Comput ; 11(4): 1518-24, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26574363

RESUMO

The direct inversion of the iterative subspace (DIIS) convergence acceleration algorithm is used in most electronic structure programs to solve the nonlinear coupled cluster amplitude equations. When the DIIS algorithm is used, the storage of previous trial vectors may become a bottleneck and the discarding of trial vectors may lead to a degradation of the convergence or even divergence. We discuss an alternative way of storing information from trial vectors where only the last three trial vectors are needed to maintain the convergence of the full set of previous trial vectors, and which requires only minor modifications of an existing DIIS code.

6.
J Chem Theory Comput ; 11(7): 2984-93, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26575735

RESUMO

We propose a reformulation of the traditional (T) triples correction to the coupled cluster singles and doubles (CCSD) energy in terms of local Hartree-Fock (HF) orbitals such that its structural form aligns with our recently developed linear-scaling divide-expand-consolidate (DEC) coupled cluster family of local correlation methods. In a DEC-CCSD(T) calculation, a basis of local occupied and virtual HF orbitals is used to partition the correlated calculation on the full system into a number of independent atomic fragment and pair fragment calculations, each performed within a truncated set of the complete orbital space. In return, this leads to a massively parallel algorithm for the evaluation of the DEC-CCSD(T) correlation energy, which formally scales linearly with the size of the full system and has a tunable precision with respect to a conventional CCSD(T) calculation via a single energy-based input threshold. The theoretical developments are supported by proof of concept DEC-CCSD(T) calculations on a series of medium-sized molecular systems.

7.
Wiley Interdiscip Rev Comput Mol Sci ; 4(3): 269-284, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25309629

RESUMO

Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.

8.
Science ; 334(6058): 974-7, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22096198

RESUMO

Nitrogenase is a complex enzyme that catalyzes the reduction of dinitrogen to ammonia. Despite insight from structural and biochemical studies, its structure and mechanism await full characterization. An iron-molybdenum cofactor (FeMoco) is thought to be the site of dinitrogen reduction, but the identity of a central atom in this cofactor remains unknown. Fe Kß x-ray emission spectroscopy (XES) of intact nitrogenase MoFe protein, isolated FeMoco, and the FeMoco-deficient nifB protein indicates that among the candidate atoms oxygen, nitrogen, and carbon, it is carbon that best fits the XES data. The experimental XES is supported by computational efforts, which show that oxidation and spin states do not affect the assignment of the central atom to C(4-). Identification of the central atom will drive further studies on its role in catalysis.


Assuntos
Carbono/química , Molibdoferredoxina/química , Azotobacter vinelandii/química , Biocatálise , Ligantes , Modelos Moleculares , Estrutura Molecular , Molibdoferredoxina/metabolismo , Nitrogênio/química , Oxirredução , Oxigênio/química , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA