Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(6): e0003824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767356

RESUMO

Recent progress on chimeric antigen receptor (CAR)-NK cells has shown promising results in treating CD19-positive lymphoid tumors with minimal toxicities [including graft versus host disease (GvHD) and cytokine release syndrome (CRS) in clinical trials. Nevertheless, the use of CAR-NK cells in combating viral infections has not yet been fully explored. Previous studies have shown that CAR-NK cells expressing S309 single-chain fragment variable (scFv), hereinafter S309-CAR-NK cells, can bind to SARS-CoV-2 wildtype pseudotyped virus (PV) and effectively kill cells expressing wild-type spike protein in vitro. In this study, we further demonstrate that the S309-CAR-NK cells can bind to different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants in vitro. We also show that S309-CAR-NK cells reduce virus loads in the NOD/SCID gamma (NSG) mice expressing the human angiotensin-converting enzyme 2 (hACE2) receptor challenged with SARS-CoV-2 wild-type (strain USA/WA1/2020). Our study demonstrates the potential use of S309-CAR-NK cells for inhibiting infection by SARS-CoV-2 and for the potential treatment of COVID-19 patients unresponsive to otherwise currently available therapeutics. IMPORTANCE: Chimeric antigen receptor (CAR)-NK cells can be "off-the-shelf" products that treat various diseases, including cancer, infections, and autoimmune diseases. In this study, we engineered natural killer (NK) cells to express S309 single-chain fragment variable (scFv), to target the Spike protein of SARS-CoV-2, hereinafter S309-CAR-NK cells. Our study shows that S309-CAR-NK cells are effective against different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants. The S309-CAR-NK cells can (i) directly bind to SARS-CoV-2 pseudotyped virus (PV), (ii) competitively bind to SARS-CoV-2 PV with 293T cells expressing the human angiotensin-converting enzyme 2 (hACE2) receptor (293T-hACE2 cells), (iii) specifically target and lyse A549 cells expressing the spike protein, and (iv) significantly reduce the viral loads of SARS-CoV-2 wild-type (strain USA/WA1/2020) in the lungs of NOD/SCID gamma (NSG) mice expressing hACE2 (hACE2-NSG mice). Altogether, the current study demonstrates the potential use of S309-CAR-NK immunotherapy as an alternative treatment for COVID-19 patients.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Células Matadoras Naturais , Receptores de Antígenos Quiméricos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Carga Viral , Animais , SARS-CoV-2/imunologia , Células Matadoras Naturais/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Camundongos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , COVID-19/imunologia , COVID-19/virologia , COVID-19/terapia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Camundongos SCID , Camundongos Endogâmicos NOD
2.
Langmuir ; 32(47): 12542-12551, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27464311

RESUMO

Opportunistic bacteria and viruses are a worldwide health threat prompting the need to develop new targeting modalities. A class of novel synthetic poly(phenylene ethynylene) (PPE)-based oligomeric conjugated polyelectrolytes (OPEs) have demonstrated potent wide-spectrum biocidal activity. A subset of cationic OPEs display high antiviral activity against the MS2 bacteriophage. The oligomers have been found to inactivate the bacteriophage and perturb the morphology of the MS2 viral capsid. However, details of the initial binding and interactions between the OPEs and the viruses are not well understood. In this study, we use a multiscale computational approach, including random sampling, molecular dynamics, and electronic structure calculations, to gain an understanding of the molecular-level interactions of a series of OPEs that vary in length, charge, and functional groups with the MS2 capsid. Our results show that OPEs strongly bind to the MS2 capsid protein assembly with binding energies of up to -30 kcal/mol. Free-energy analysis shows that the binding is dominated by strong van der Waals interactions between the hydrophobic OPE backbone and the capsid surface and strong electrostatic free energy contributions between the OPE charged moieties and charged residues on the capsid surface. This knowledge provides molecular-level insight into how to tailor the OPEs to optimize viral capsid disruption and increase OPE efficacy to target amphiphilic protein coats of icosahedral-based viruses.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Levivirus , Polieletrólitos/química , Cátions , Simulação de Dinâmica Molecular , Polímeros
3.
Nano Lett ; 15(4): 2422-8, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25719733

RESUMO

We report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. This study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

4.
Photochem Photobiol Sci ; 13(2): 247-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24149833

RESUMO

Cationic oligo-p-phenylene ethynylenes are highly effective light-activated biocides that deal broad-spectrum damage to a variety of pathogens, including bacteria. A potential problem arising in the long-term usage of these compounds is photochemical breakdown, which nullifies their biocidal activity. Recent work has shown that these molecules complex with oppositely-charged surfactants, and that the resulting complexes are protected from photodegradation. In this manuscript, we determine the biocidal activity of an oligomer and a complex formed between it and sodium dodecyl sulfate. The complexes are able to withstand prolonged periods of irradiation, continuing to effectively kill both Gram-negative and Gram-positive bacteria, while the oligomer by itself loses its biocidal effectiveness quickly in the presence of light. In addition, damage and stress responses induced by these biocides in both E. coli and S. aureus are discussed. This work shows that complexation with surfactants is a viable method for long-term light-activated biocidal applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Polímeros/química , Polímeros/farmacologia , Dodecilsulfato de Sódio/química , Tensoativos/química , Raios Ultravioleta , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Escherichia coli/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Staphylococcus aureus/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo
5.
J Phys Chem A ; 118(35): 7442-53, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24527783

RESUMO

Influx of ferrous ions from the cytoplasm through 3-fold pores in the shell of ferritin protein is computed using a 3-dimensional Poisson-Nernst-Planck electrodiffusion model, with inputs such as the pore structure and the diffusivity profile of permeant Fe(2+) ions extracted from all-atom molecular dynamics (MD) simulations. These calculations successfully reproduce experimental estimates of the transit time of Fe(2+) through the ferritin coat, which is on the millisecond time scale and hence much too long to be directly simulated via all-atom MD. This is also much longer than the typical time scale for ion transit in standard membrane spanning ion channels whose pores bear structural similarity to that of the 3-fold ferritin pore. The slow time scale for Fe(2+) transport through ferritin pores is traced to two features that distinguish the ferritin pore system from standard ion channels, namely, (i) very low concentration of cytoplasmic Fe(2+) under physiological conditions and (ii) very small internal diffusion coefficients for ions inside the ferritin pore resulting from factors that include the divalent nature of Fe(2+) and two rings of negatively charged amino acids surrounding a narrow geometric obstruction within the ferritin pore interior.


Assuntos
Apoferritinas/metabolismo , Citoplasma/metabolismo , Difusão , Humanos , Transporte de Íons , Íons/metabolismo , Ferro/metabolismo , Simulação de Dinâmica Molecular , Eletricidade Estática , Água/química
6.
Nephrol News Issues ; 28(7): 23-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25055437

RESUMO

Professional trainings through the use of webinar format are widely used, but participant feedback is seldom studied. In the spring of 2013, 83 nephrology social workers participated in weekly webinar trainings to learn how to implement Symptom Targeted Intervention (STI) into their clinical practice. At the end of the project, participants were asked to complete an online questionnaire to provide feedback on the perceived value and effectiveness of the trainings. Sixty-eight participants completed the questionnaire. The results indicate that social workers found the webinar trainings to be very useful and wanted the trainings to continue beyond the project. Based on participant feedback, clinical training and case presentation through the use of ongoing webinars is a useful education modality for nephrology professionals, but more research is indicated to evaluate how best to utilize webinars to maximize learning.


Assuntos
Instrução por Computador/métodos , Educação Continuada/métodos , Retroalimentação , Internet , Nefrologia/educação , Serviço Social/educação , Telecomunicações , Comportamento do Consumidor , Feminino , Humanos , Inquéritos e Questionários , Estados Unidos
7.
Proteins ; 81(6): 1042-50, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23344859

RESUMO

We study via all atom classical molecular dynamics (MD) simulation the process of uptake of ferrous ions (Fe(2+)) into the human ferritin protein and the catalytic ferroxidase sites via pores ("channels") in the interior of the protein. We observe that the three-fold hydrophilic channels serve as the main entrance pathway for the Fe(2+) ions. The binding sites along the ion pathway are investigated. Two strong binding sites, at the Asp131 and Glu134 residues and two weak binding sites, at the His118 and Cys130 are observed inside the three-fold channel. We also identify an explicit pathway for an ion exiting the channel into the central core of the protein as it moves to the ferroxidase site. The diffusion of an Fe(2+) ion from the inner opening of the channel to a ferroxidase site located in the interior region of the protein coat is assisted by Thr135, His136 and Tyr137. The Fe(2+) ion binds preferentially to site A of the ferroxidase site.


Assuntos
Apoferritinas/metabolismo , Ceruloplasmina/metabolismo , Ferro/metabolismo , Apoferritinas/química , Sítios de Ligação , Cátions/metabolismo , Ceruloplasmina/química , Humanos , Simulação de Dinâmica Molecular , Sódio/metabolismo
8.
Langmuir ; 29(31): 9712-20, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23834062

RESUMO

Cationic oligo-p-phenylene ethynylenes are very effective light-activated biocides and biosensors but degrade upon exposure to light. In this study, we explore the photochemistry of a class of "end-only" compounds from this series, which have cationic moieties on the ends of the backbone. Product characterization by mass spectrometry reveals that the photoreactivity of these molecules is higher than that of a previously studied oligomer and that the primary products of photolysis result from the addition of water or oxygen across the triple bond. In addition, a product suggesting the addition of peroxide or other reactive oxygen species across the triple bond was observed. To explore avenues by which the photodegradation of these compounds can be mitigated, the effects of complexation with sodium dodecyl sulfate micelles on their photochemistry was explored. Classical molecular dynamics simulations revealed that compounds that were protected from photolysis by SDS buried their phenylene ethynylene backbones into the interior of the micelle, protecting it from contact with water. This work has revealed a molecular basis for the protection of a novel class of light-activated biocides from irradiation that is consistent with the proposed photochemistry of these compounds. This information can be useful for developing photodegradation-resistant biocidal materials and applications for current compounds and leads to new molecular design.


Assuntos
Alcinos/química , Éteres/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Micelas , Modelos Moleculares , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Solventes/química
9.
Langmuir ; 29(51): 15732-7, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24279339

RESUMO

In this letter, the aggregation modes of two classes of ionic p-phenylene ethynylene oligomers with oppositely charged surfactants are studied. The location of the ionic side chains was found to influence the type of aggregate formed when an equivalent number of surfactant molecules are added to solution. When the charged groups were located at the terminal ends of the molecule, strong H-aggregates were observed to form. Alternatively, when the ionic groups were both located on opposite sides of the central phenyl ring, the formation of J-aggregates was observed. Interestingly, as the surfactant concentration approaches the critical micelle concentration, the weakly bound aggregates are dissociated and the absorbance spectrum returns to what is observed in water. This study reveals the structural basis for aggregation effects between molecules based on the p-phenylene ethynylene backbone, and gives an understanding of how to influence the aggregation mode of similar compounds.


Assuntos
Polímeros/química , Tensoativos/química , Micelas
10.
Br Dent J ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624307

RESUMO

Introduction There is currently reduced access to NHS dental services in the UK, particularly in England, with rural and coastal areas significantly affected. Recruitment and retention in dentistry has been highlighted as an issue contributing to the problem.Objectives To explore what is known or unknown about recruitment and retention of the dental workforce in the UK, with a particular focus on rural and coastal areas. We were keen to gain information relating to factors affecting recruitment and retention, geographical distribution of the workforce, anticipated challenges, strategies or proposals to assist workforce planning and the extent of empirical research.Methods Searches for peer-reviewed literature and reports were undertaken and included when they met the eligibility criteria. Data were extracted and the findings narratively synthesised.Discussion The findings suggested wide ranging recruitment and retention issues of the dental workforce in the UK. Most issues were associated with NHS dentists, followed by dental nurses across both the NHS and private sectors. The worst affected parts of the country were rural and coastal areas.Conclusion It appears from the evidence that there are many dental professionals discussing recruitment and retention issues, followed by stakeholders. However, there is limited research and data to initiate change.

11.
Br Dent J ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723311

RESUMO

Introduction Devon and Cornwall have been identified as 'dental deserts' with limited NHS dental access and high levels of oral health inequality. Challenges around recruitment and retention of the dental workforce have been acknowledged as an important contributory factor.Aims The aim of this research was to explore the experiences of dental practices within Devon and Cornwall in relation to recruitment and retention of the dental workforce.Method A self-administered, online questionnaire was used to explore various aspects of workforce recruitment and retention. The questionnaire included categorical rating scale and free-text question formats providing quantitative and qualitative data.Results In total, 106 dental practices responded to the survey, providing a response rate of 36%. The vast majority of respondents (94%) considered recruitment and retention to be a major barrier to delivering NHS services. Additionally, 77% of practices had a current staff vacancy, 57% had a dentist vacancy and 48% had a vacancy for dental nurses. Thematic analysis led to identification of four main themes which were considered to influence recruitment and retention: NHS system; economic challenges; logistics; and support networks.Conclusion A large number of dental practices in Devon and Cornwall are failing to operate at capacity due to workforce shortages, which is affecting access to services in both NHS and private practices. Recruitment and retention of dentists and dental nurses appears to be the most challenging factor, with NHS practices affected more than the private sector.

12.
Br Dent J ; 234(8): 573-577, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117357

RESUMO

The precarious state of NHS dentistry is widely acknowledged, yet there is limited progress in addressing the underlying issues. Further delays will undoubtedly impact patient care, leading to oral health deterioration and unnecessary suffering. This will predominantly affect the most vulnerable in society, resulting in greater oral health inequalities.The underlying issues contributing to the current NHS dental crisis are many, and they include: prolonged delays in contract reform; long-term underinvestment; private sector growth; and fewer dentists working full-time and/or in the NHS. In England, an NHS dental contract that fails to promote prevention or equality of access continues to have a deep and pernicious impact on the future of NHS dentistry. The devastating impact of the COVID-19 pandemic on access cannot be underestimated and neither should the effect of Brexit on the availability of workforce.The recruitment and retention of dentists, and other members of the dental team, is undoubtedly a major issue in terms of capacity and access to NHS dental care. These problems, seen across the UK, are a particular issue in England, with acute challenges within rural and coastal areas.There is an urgent necessity to develop coherent, multifaceted strategies, aided by the collection of clear and accurate workforce data, to tackle these issues.


Assuntos
COVID-19 , Pandemias , Humanos , Reino Unido , União Europeia , Pandemias/prevenção & controle , COVID-19/epidemiologia , Recursos Humanos , Odontólogos
13.
Nat Mater ; 10(5): 389-97, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21499315

RESUMO

Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 10(6)-fold improvement over comparable liposomes.


Assuntos
Carcinoma Hepatocelular/patologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Neoplasias Hepáticas/patologia , Nanocápsulas/química , Nanoporos , Sequência de Aminoácidos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Humanos , Lipossomos/química , Neoplasias Hepáticas/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Dióxido de Silício/química
14.
Langmuir ; 28(42): 14849-54, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23036095

RESUMO

A novel class of phenylene ethynylene polyelectrolyte oligomers (OPEs) has been found to be effective biocidal agents against a variety of pathogens. The mechanism of attack is not yet fully understood. Recent studies have shown that OPEs cause catastrophic damage to large unilamellar vesicles. This study uses classical molecular dynamics (MD) simulations to understand how OPEs interact with model lipid bilayers. All-atom molecular dynamics simulations show that aggregates of OPEs inserted into the membrane cause significant structural damage and create a channel, or pore, that allows significant leakage of water through the membrane on the 0.1 µs time scale.


Assuntos
Desinfetantes/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Cátions/química , Modelos Moleculares
15.
ACS Appl Mater Interfaces ; 14(13): 14871-14886, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344326

RESUMO

Photodynamic therapy (PDT) has been explored as a therapeutic strategy to clear toxic amyloid aggregates involved in neurodegenerative disorders such as Alzheimer's disease. A major limitation of PDT is off-target oxidation, which can be lethal for the surrounding cells. We have shown that a novel class of oligo-p-phenylene ethynylenes (OPEs) exhibit selective binding and fluorescence turn-on in the presence of prefibrillar and fibrillar aggregates of disease-relevant proteins such as amyloid-ß (Aß) and α-synuclein. Concomitant with fluorescence turn-on, OPE also photosensitizes singlet oxygen under illumination through the generation of a triplet state, pointing to the potential application of OPEs as photosensitizers in PDT. Herein, we investigated the photosensitizing activity of an anionic OPE for the photo-oxidation of Aß fibrils and compared its efficacy to the well-known but nonselective photosensitizer methylene blue (MB). Our results show that, while MB photo-oxidized both monomeric and fibrillar conformers of Aß40, OPE oxidized only Aß40 fibrils, targeting two histidine residues on the fibril surface and a methionine residue located in the fibril core. Oxidized fibrils were shorter and more dispersed but retained the characteristic ß-sheet rich fibrillar structure and the ability to seed further fibril growth. Importantly, the oxidized fibrils displayed low toxicity. We have thus discovered a class of novel theranostics for the simultaneous detection and oxidization of amyloid aggregates. Importantly, the selectivity of OPE's photosensitizing activity overcomes the limitation of off-target oxidation of traditional photosensitizers and represents an advancement of PDT as a viable strategy to treat neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Humanos , Fragmentos de Peptídeos/química , Conformação Proteica em Folha beta
16.
Cell Biosci ; 12(1): 88, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690792

RESUMO

BACKGROUND: An animal model that can mimic the SARS-CoV-2 infection in humans is critical to understanding the rapidly evolving SARS-CoV-2 virus and for development of prophylactic and therapeutic strategies to combat emerging mutants. Studies show that the spike proteins of SARS-CoV and SARS-CoV-2 bind to human angiotensin-converting enzyme 2 (hACE2, a well-recognized, functional receptor for SARS-CoV and SARS-CoV-2) to mediate viral entry. Several hACE2 transgenic (hACE2Tg) mouse models are being widely used, which are clearly invaluable. However, the hACE2Tg mouse model cannot fully explain: (1) low expression of ACE2 observed in human lung and heart, but lung or heart failure occurs frequently in severe COVID-19 patients; (2) low expression of ACE2 on immune cells, but lymphocytopenia occurs frequently in COVID-19 patients; and (3) hACE2Tg mice do not mimic the natural course of SARS-CoV-2 infection in humans. Moreover, one of most outstanding features of coronavirus infection is the diversity of receptor usage, which includes the newly proposed human CD147 (hCD147) as a possible co-receptor for SARS-CoV-2 entry. It is still debatable whether CD147 can serve as a functional receptor for SARS-CoV-2 infection or entry. RESULTS: Here we successfully generated a hCD147 knock-in mouse model (hCD147KI) in the NOD-scid IL2Rgammanull (NSG) background. In this hCD147KI-NSG mouse model, the hCD147 genetic sequence was placed downstream of the endogenous mouse promoter for mouse CD147 (mCD147), which creates an in vivo model that may better recapitulate physiological expression of hCD147 proteins at the molecular level compared to the existing and well-studied K18-hACE2-B6 (JAX) model. In addition, the hCD147KI-NSG mouse model allows further study of SARS-CoV-2 in the immunodeficiency condition which may assist our understanding of this virus in the context of high-risk populations in immunosuppressed states. Our data show (1) the human CD147 protein is expressed in various organs (including bronchiolar epithelial cells) in hCD147KI-NSG mice by immunohistochemical staining and flow cytometry; (2) hCD147KI-NSG mice are marginally sensitive to SARS-CoV-2 infection compared to WT-NSG littermates characterized by increased viral copies by qRT-PCR and moderate body weight decline compared to baseline; (3) a significant increase in leukocytes in the lungs of hCD147KI-NSG mice, compared to infected WT-NSG mice. CONCLUSIONS: hCD147KI-NSG mice are more sensitive to COVID-19 infection compared to WT-NSG mice. The hCD147KI-NSG mouse model can serve as an additional animal model for further interrogation whether CD147 serve as an independent functional receptor or accessory receptor for SARS-CoV-2 entry and immune responses.

17.
Res Sq ; 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35475172

RESUMO

Background: An animal model that can mimic the SARS-CoV-2 infection in humans is critical to understanding the rapidly evolving SARS-CoV-2 virus and for development of prophylactic and therapeutic strategies to combat emerging mutants. Studies show that the spike proteins of SARS-CoV and SARS-CoV-2 bind to human angiotensin-converting enzyme 2 (hACE2, a well-recognized, functional receptor for SARS-CoV and SARS-CoV-2) to mediate viral entry. Several hACE2 transgenic (hACE2Tg) mouse models are being widely used, which are clearly invaluable. However, the hACE2Tg mouse model cannot fully explain: 1) low expression of ACE2 observed in human lung and heart, but lung or heart failure occurs frequently in severe COVID-19 patients; 2) low expression of ACE2 on immune cells, but lymphocytopenia occurs frequently in COVID-19 patients; and 3) hACE2Tg mice do not mimic the natural course of SARS-CoV-2 infection in humans. Moreover, one of most outstanding features of coronavirus infection is the diversity of receptor usage, which includes the newly proposed human CD147 (hCD147) as a possible co-receptor for SARS-CoV-2 entry. It is still debatable whether CD147 can serve as a functional receptor for SARS-CoV-2 infection or entry. Results: Here we successfully generated a hCD147 knock-in mouse model (hCD147KI) in the NOD- scid IL2Rgamma null (NSG) background. In this hCD147KI-NSG mouse model, the hCD147 genetic sequence was placed downstream of the endogenous mouse promoter for mouse CD147 (mCD147), which creates an in vivo model that may better recapitulate physiological expression of hCD147 proteins at the molecular level compared to the existing and well-studied K18-hACE2-B6 (JAX) model. In addition, the hCD147KI-NSG mouse model allows further study of SARS-CoV-2 in the immunodeficiency condition which may assist our understanding of this virus in the context of high-risk populations in immunosuppressed states. Our data show 1) the human CD147 protein is expressed in various organs (including bronchiolar epithelial cells) in hCD147KI-NSG mice by immunohistochemical staining and flow cytometry; 2) hCD147KI-NSG mice are marginally sensitive to SARS-CoV-2 infection compared to WT-NSG littermates characterized by increased viral copies by qRT-PCR and moderate body weight decline compared to baseline; 3) a significant increase in leukocytes in the lungs of hCD147KI-NSG mice, compared to infected WT-NSG mice. Conclusions: hCD147KI-NSG mice are more sensitive to COVID-19 infection compared to WT-NSG mice. The hCD147KI-NSG mouse model can serve as an additional animal model for further interrogation whether CD147 serve as an independent functional receptor or accessory receptor for SARS-CoV-2 entry and immune responses.

18.
Langmuir ; 27(8): 4945-55, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21405056

RESUMO

Three series of cationic oligo p-phenyleneethynylenes (OPEs) have been synthesized to study their structure-property relationships and gain insights into the transition from molecular to macromolecular properties. The absorbance maxima and molar extinction coefficients in all three sets increase with increasing number of repeat units; however, the increase in λ(max) between the oligomers having 2 and 3 repeat units is very small, and the oligomer having 3 repeat units shows virtually the same spectra as a p-phenyleneethynylene polymer having 49 repeat units. A computational study of the oligomers using density functional theory calculations indicates that while the simplest oligomers (OPE-1) are fully conjugated, the larger oligomers are nonplanar and the limiting "segment chromophore" may be confined to a near-planar segment extending over three or four phenyl rings. Several of the OPEs self-assemble on anionic "scaffolds", with pronounced changes in absorption and fluorescence. Both experimental and computational results suggest that the planarization of discrete conjugated segments along the phenylene-ethynylene backbone is predominantly responsible for the photophysical characteristics of the assemblies formed from the larger oligomers. The striking differences in fluorescence between methanol and water are attributed to reversible nucleophilic attack of structured interfacial water on the excited singlet state.


Assuntos
Alcinos/química , Éteres/química , Cátions , Fluorescência , Fosfatos , Processos Fotoquímicos , Análise Espectral
19.
ACS Chem Neurosci ; 11(22): 3761-3771, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33141569

RESUMO

Amyloid protein aggregates are pathological hallmarks of neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's (PD) diseases and are believed to be formed well before the onset of neurodegeneration and cognitive impairment. Monitoring the course of protein aggregation is thus vital to understanding and combating these diseases. We have recently demonstrated that a novel class of fluorescence sensors, oligomeric p-phenylene ethynylene (PE)-based electrolytes (OPEs) selectively bind to and detect prefibrillar and fibrillar aggregates of AD-related amyloid-ß (Aß) peptides over monomeric Aß. In this study, we investigated the binding between two OPEs, anionic OPE12- and cationic OPE24+, and to two different ß-sheet rich Aß oligomers using classical all-atom molecular dynamics simulations. Our simulations have revealed a number of OPE binding sites on Aß oligomer surfaces, and these sites feature hydrophobic amino acids as well as oppositely charged amino acids. Binding energy calculations show energetically favorable interactions between both anionic and cationic OPEs with Aß oligomers. Moreover, OPEs bind as complexes as well as single molecules. Compared to free OPEs, Aß protofibril bound OPEs show backbone planarization with restricted rotations and reduced hydration of the ethyl ester end groups. These characteristics, along with OPE complexation, align with known mechanisms of binding induced OPE fluorescence turn-on and spectral shifts from a quenched, unbound state in aqueous solutions. This study thus sheds light on the molecular-level details of OPE-Aß protofibril interactions and provides a structural basis for fluorescence turn-on sensing modes of OPEs.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Fenômenos Biofísicos , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta
20.
J Phys Chem B ; 113(33): 11437-47, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19630413

RESUMO

A description of electron transfer in condensed-phase media requires models that adequately describe the coupling of the electronic degrees of freedom to the surrounding nuclear coordinates. The spin-boson model has been the canonical model used to understand quantum dynamic processes in condensed-phase media over the last 25 years. Inherent in the standard model of a two-state quantum system coupled to a bosonic bath is the assumption that the Condon approximation is valid. In this context, the Condon approximation assumes that the bath configurations (coordinates) have no effect on the nonadiabatic coupling matrix element. While this is a useful model for electron transfer in small molecular systems, the validity of this approximation is less likely when large-scale motions of solvent molecules are strongly coupled to the electron transfer event, e.g., in molecular clamps and long-range electron transfer in biopolymers. In the present paper a general model for two-state electron transfer which allows for system-bath coupling in both the diagonal and off-diagonal (nonadiabatic) terms is studied. Time-dependent perturbation theory for this Hamiltonian is developed using a small polaron transformation. As noted in several recent studies, in a certain regime of parameter space, the relevant Hamiltonian admits an exact solution, termed the exactly solvable non-Condon Hamiltonian (or NCE). This limit, for which exact solutions are available, is used to benchmark the short- and long-time accuracy of various perturbative approaches. The validated perturbation equations are subsequently used to explore the role of non-Condon effects on electron transfer by systematically increasing the strength of the non-Condon coupling term from zero (i.e., the canonical spin-boson model) to the value that pertains to the exactly solvable non-Condon model (where non-Condon effects are significant).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA