Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 526(7573): 443-7, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26322584

RESUMO

Alzheimer disease (AD) is characterized by the accumulation of amyloid plaques, which are predominantly composed of amyloid-ß peptide. Two principal physiological pathways either prevent or promote amyloid-ß generation from its precursor, ß-amyloid precursor protein (APP), in a competitive manner. Although APP processing has been studied in great detail, unknown proteolytic events seem to hinder stoichiometric analyses of APP metabolism in vivo. Here we describe a new physiological APP processing pathway, which generates proteolytic fragments capable of inhibiting neuronal activity within the hippocampus. We identify higher molecular mass carboxy-terminal fragments (CTFs) of APP, termed CTF-η, in addition to the long-known CTF-α and CTF-ß fragments generated by the α- and ß-secretases ADAM10 (a disintegrin and metalloproteinase 10) and BACE1 (ß-site APP cleaving enzyme 1), respectively. CTF-η generation is mediated in part by membrane-bound matrix metalloproteinases such as MT5-MMP, referred to as η-secretase activity. η-Secretase cleavage occurs primarily at amino acids 504-505 of APP695, releasing a truncated ectodomain. After shedding of this ectodomain, CTF-η is further processed by ADAM10 and BACE1 to release long and short Aη peptides (termed Aη-α and Aη-ß). CTFs produced by η-secretase are enriched in dystrophic neurites in an AD mouse model and in human AD brains. Genetic and pharmacological inhibition of BACE1 activity results in robust accumulation of CTF-η and Aη-α. In mice treated with a potent BACE1 inhibitor, hippocampal long-term potentiation was reduced. Notably, when recombinant or synthetic Aη-α was applied on hippocampal slices ex vivo, long-term potentiation was lowered. Furthermore, in vivo single-cell two-photon calcium imaging showed that hippocampal neuronal activity was attenuated by Aη-α. These findings not only demonstrate a major functionally relevant APP processing pathway, but may also indicate potential translational relevance for therapeutic strategies targeting APP processing.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/citologia , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Neurônios/fisiologia , Proteólise , Proteínas ADAM/metabolismo , Proteína ADAM10 , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Sinalização do Cálcio , Modelos Animais de Doenças , Feminino , Hipocampo/enzimologia , Hipocampo/fisiologia , Humanos , Técnicas In Vitro , Potenciação de Longa Duração , Masculino , Metaloproteinases da Matriz Associadas à Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Peso Molecular , Neuritos/enzimologia , Neuritos/metabolismo , Neurônios/enzimologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Placa Amiloide , Processamento de Proteína Pós-Traducional , Análise de Célula Única
2.
Nature ; 504(7479): 287-90, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24213633

RESUMO

Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip.


Assuntos
Flagelos/química , Flagelos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Salmonella typhimurium/citologia , Cristalização , Entropia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Dobramento de Proteína , Transporte Proteico
3.
Elife ; 102021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34612202

RESUMO

Human organoid systems recapitulate key features of organs offering platforms for modelling developmental biology and disease. Tissue-derived organoids have been widely used to study the impact of extrinsic niche factors on stem cells. However, they are rarely used to study endogenous gene function due to the lack of efficient gene manipulation tools. Previously, we established a human foetal lung organoid system (Nikolic et al., 2017). Here, using this organoid system as an example, we have systematically developed and optimised a complete genetic toolbox for use in tissue-derived organoids. This includes 'Organoid Easytag', our efficient workflow for targeting all types of gene loci through CRISPR-mediated homologous recombination followed by flow cytometry for enriching correctly targeted cells. Our toolbox also incorporates conditional gene knockdown or overexpression using tightly inducible CRISPR interference and CRISPR activation which is the first efficient application of these techniques to tissue-derived organoids. These tools will facilitate gene perturbation studies in tissue-derived organoids facilitating human disease modelling and providing a functional counterpart to many ongoing descriptive studies, such as the Human Cell Atlas Project.


Assuntos
Sistemas CRISPR-Cas , Organoides , Técnicas de Silenciamento de Genes/métodos , Marcação de Genes/métodos , Humanos , Pulmão/citologia
4.
Cell Rep ; 26(3): 582-593.e5, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650353

RESUMO

The neuronal microtubule-associated protein tau, MAPT, is central to the pathogenesis of many dementias. Autosomal-dominant mutations in MAPT cause inherited frontotemporal dementia (FTD), but the underlying pathogenic mechanisms are unclear. Using human stem cell models of FTD due to MAPT mutations, we find that tau becomes hyperphosphorylated and mislocalizes to cell bodies and dendrites in cortical neurons, recapitulating a key early event in FTD. Mislocalized tau in the cell body leads to abnormal microtubule movements in FTD-MAPT neurons that grossly deform the nuclear membrane. This results in defective nucleocytoplasmic transport, which is corrected by microtubule depolymerization. Neurons in the post-mortem human FTD-MAPT cortex have a high incidence of nuclear invaginations, indicating that tau-mediated nuclear membrane dysfunction is an important pathogenic process in FTD. Defects in nucleocytoplasmic transport in FTD point to important commonalities in the pathogenic mechanisms of tau-mediated dementias and ALS-FTD due to TDP-43 and C9orf72 mutations.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Demência Frontotemporal/genética , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Demência Frontotemporal/patologia , Humanos
5.
Acta Neuropathol Commun ; 7(1): 22, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767766

RESUMO

Tau neuronal and glial pathologies drive the clinical presentation of Alzheimer's disease and related human tauopathies. There is a growing body of evidence indicating that pathological tau species can travel from cell to cell and spread the pathology through the brain. Throughout the last decade, physiological and pathological tau have become attractive targets for AD therapies. Several therapeutic approaches have been proposed, including the inhibition of protein kinases or protein-3-O-(N-acetyl-beta-D-glucosaminyl)-L-serine/threonine Nacetylglucosaminyl hydrolase, the inhibition of tau aggregation, active and passive immunotherapies, and tau silencing by antisense oligonucleotides. New tau therapeutics, across the board, have demonstrated the ability to prevent or reduce tau lesions and improve either cognitive or motor impairment in a variety of animal models developing neurofibrillary pathology. The most advanced strategy for the treatment of human tauopathies remains immunotherapy, which has already reached the clinical stage of drug development. Tau vaccines or humanised antibodies target a variety of tau species either in the intracellular or extracellular spaces. Some of them recognise the amino-terminus or carboxy-terminus, while others display binding abilities to the proline-rich area or microtubule binding domains. The main therapeutic foci in existing clinical trials are on Alzheimer's disease, progressive supranuclear palsy and non-fluent primary progressive aphasia. Tau therapy offers a new hope for the treatment of many fatal brain disorders. First efficacy data from clinical trials will be available by the end of this decade.


Assuntos
Imunoterapia/tendências , Inibidores de Proteínas Quinases/uso terapêutico , Tauopatias/terapia , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/metabolismo , Humanos , Imunoterapia/métodos , Inibidores de Proteínas Quinases/farmacologia , Paralisia Supranuclear Progressiva/imunologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/terapia , Tauopatias/imunologia , Tauopatias/metabolismo , Proteínas tau/imunologia , Proteínas tau/metabolismo
6.
Cell Rep ; 22(13): 3612-3624, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590627

RESUMO

In Alzheimer's disease, neurofibrillary tangle pathology appears to spread along neuronal connections, proposed to be mediated by the release and uptake of abnormal, disease-specific forms of microtubule-binding protein tau MAPT. It is currently unclear whether transfer of tau between neurons is a toxic gain-of-function process in dementia or reflects a constitutive biological process. We report two entry mechanisms for monomeric tau to human neurons: a rapid dynamin-dependent phase typical of endocytosis and a second, slower actin-dependent phase of macropinocytosis. Aggregated tau entry is independent of actin polymerization and largely dynamin dependent, consistent with endocytosis and distinct from macropinocytosis, the major route for aggregated tau entry reported for non-neuronal cells. Anti-tau antibodies abrogate monomeric tau entry into neurons, but less efficiently in the case of aggregated tau, where internalized tau carries antibody with it into neurons. These data suggest that tau entry to human neurons is a physiological process and not a disease-specific phenomenon.


Assuntos
Neurônios/metabolismo , Proteínas tau/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Dinaminas/antagonistas & inibidores , Dinaminas/metabolismo , Endocitose , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fosforilação , Agregação Patológica de Proteínas
7.
Methods Mol Biol ; 1593: 17-35, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28389942

RESUMO

During assembly of the bacterial flagellum, structural subunits synthesized inside the cell must be exported across the cytoplasmic membrane before they can crystallize into the nascent flagellar structure. This export process is facilitated by a specialized Flagellar Type III Secretion System (fT3SS) located at the base of each flagellum. Here, we describe three methods-isothermal titration calorimetry, photo-crosslinking using unnatural amino acids, and a subunit capture assay-used to investigate the interactions of flagellar structural subunits with the membrane export machinery component FlhB.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia
8.
Philos Trans R Soc Lond B Biol Sci ; 370(1661): 20140033, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25533091

RESUMO

Salmonella enterica causes a range of important diseases in humans and a in a variety of animal species. The ability of bacteria to adhere to, invade and survive within host cells plays an important role in the pathogenesis of Salmonella infections. In systemic salmonellosis, macrophages constitute a niche for the proliferation of bacteria within the host organism. Salmonella enterica serovar Typhimurium is flagellated and the frequency with which this bacterium collides with a cell is important for infection efficiency. We investigated how bacterial motility affects infection efficiency, using a combination of population-level macrophage infection experiments and direct imaging of single-cell infection events, comparing wild-type and motility mutants. Non-motile and aflagellate bacterial strains, in contrast to wild-type bacteria, collide less frequently with macrophages, are in contact with the cell for less time and infect less frequently. Run-biased Salmonella also collide less frequently with macrophages but maintain contact with macrophages for a longer period of time than wild-type strains and infect the cells more readily. Our results suggest that uptake of S. Typhimurium by macrophages is dependent upon the duration of contact time of the bacterium with the cell, in addition to the frequency with which the bacteria collide with the cell.


Assuntos
Aderência Bacteriana/fisiologia , Adesão Celular/fisiologia , Macrófagos/fisiologia , Salmonella typhimurium/fisiologia , Animais , Linhagem Celular , Camundongos , Movimento , Mutação
9.
Cell Rep ; 11(5): 689-96, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25921538

RESUMO

Accumulation of Aß peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aß peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by ß-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aß signaling to neurons.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Dosagem de Genes , Humanos , Fosforilação , Transdução de Sinais
10.
FEBS Lett ; 530(1-3): 24-30, 2002 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-12387860

RESUMO

The interactions between the polyanionic ligands phosphate and sulphate and the type II dehydroquinases from Streptomyces coelicolor and Mycobacterium tuberculosis have been characterised using a combination of structural and kinetic methods. From both approaches, it is clear that interactions are more complex in the case of the latter enzyme. The data provide new insights into the differences between the two enzymes in terms of substrate recognition and catalytic efficiency and may also explain the relative potencies of rationally designed inhibitors. An improved route to the synthesis of the substrate 3-dehydroquinic acid (dehydroquinate) is described.


Assuntos
Hidroliases/metabolismo , Polímeros/metabolismo , Cristalografia por Raios X , Hidroliases/química , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Ressonância Magnética Nuclear Biomolecular , Polieletrólitos , Ligação Proteica , Conformação Proteica , Streptomyces/enzimologia , Especificidade por Substrato
11.
Microb Cell ; 1(2): 64-66, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24921063

RESUMO

Flagella, the rotary propellers on the surface of bacteria, present a paradigm for how cells build and operate complex molecular 'nanomachines'. Flagella grow at a constant rate to extend several times the length of the cell, and this is achieved by thousands of secreted structural subunits transiting through a central channel in the lengthening flagellum to incorporate into the nascent structure at the distant extending tip. A great mystery has been how flagella can assemble far outside the cell where there is no conventional energy supply to fuel their growth. Recent work published by Evans et al. [Nature (2013) 504: 287-290], has gone some way towards solving this puzzle, presenting a simple and elegant transit mechanism in which growth is powered by the subunits them selves as they link head-to-tail in a chain that is pulled through the length of the growing structure to the tip. This new mechanism answers an old question and may have resonance in other assembly processes.

12.
Trends Microbiol ; 22(10): 566-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24973293

RESUMO

Flagella, the helical propellers that extend from the bacterial surface, are a paradigm for how complex molecular machines can be built outside the living cell. Their assembly requires ordered export of thousands of structural subunits across the cell membrane and this is achieved by a type III export machinery located at the flagellum base, after which subunits transit through a narrow channel at the core of the flagellum to reach the assembly site at the tip of the nascent structure, up to 20µm from the cell surface. Here we review recent findings that provide new insights into flagellar export and assembly, and a new and unanticipated mechanism for constant rate flagellum growth.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Membrana Celular/metabolismo , Transporte Proteico
13.
PLoS One ; 9(10): e111451, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25350000

RESUMO

E. coli is a model platform for engineering microbes, so genetic circuit design and analysis will be greatly facilitated by simple and effective approaches to introduce genetic constructs into the E. coli chromosome at well-characterised loci. We combined the Red recombinase system of bacteriophage λ and Isothermal Gibson Assembly for rapid integration of novel DNA constructs into the E. coli chromosome. We identified the flagellar region as a promising region for integration and expression of genetic circuits. We characterised integration and expression at four candidate loci, fliD, fliS, fliT, and fliY, of the E. coli flagellar region 3a. The integration efficiency and expression from the four integrations varied considerably. Integration into fliD and fliS significantly decreased motility, while integration into fliT and fliY had only a minor effect on the motility. None of the integrations had negative effects on the growth of the bacteria. Overall, we found that fliT was the most suitable integration site.


Assuntos
Escherichia coli/metabolismo , Flagelos/metabolismo , Redes Reguladoras de Genes , Proteínas de Bactérias/genética , Bacteriófago lambda/metabolismo , Cromossomos Bacterianos , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/metabolismo , Flagelina/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Mutação , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Recombinases/metabolismo , Biologia Sintética
14.
FEMS Microbiol Lett ; 293(2): 292-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19260965

RESUMO

Bacteria secrete flagella subunits and deliver virulence effectors via type III export systems. During flagellar filament assembly, a chaperone escort mechanism has been proposed to enhance the export of early, minor flagellar filament components by selectively binding and cycling their chaperones. Here we identify virulence orthologues of the flagellar chaperone escort FliJ and show that the orthologues Salmonella InvI and Yersinia YscO are, like FliJ, essential for their type III export pathway and similarly, do not bind export substrates. Like FliJ, they recognize a subset of export chaperones, in particular those of the host membrane translocon components required for subsequent effector delivery.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Salmonella typhimurium/metabolismo , Yersinia/metabolismo , Ligação Proteica , Fatores de Virulência/metabolismo
15.
J Mol Biol ; 374(4): 877-82, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17967465

RESUMO

The bacterial flagellum assembles in a strict order, with structural subunits delivered to the growing flagellum by a type III export pathway. Early rod-and-hook subunits are exported before completion of the hook, at which point a subunit-specificity switch allows export of late filament subunits. This implies that in bacteria with multiple flagella at different stages of assembly, each export pathway can discriminate and sort unchaperoned early and chaperoned late subunits. To establish whether subunit sorting is distinct from subunit transition from the cytosol to the membrane, in particular docking at the membrane-associated FliI ATPase, the pathway was manipulated in vivo. When ATP hydrolysis by the FliI ATPase was disabled and when the pathway was locked into an early export state, both unchaperoned early and chaperoned late subunits stalled and accumulated at the inner membrane. Furthermore, a chaperone that attenuates late subunit export by stalling when docked at the wild-type ATPase also stalled at the ATPase in an early-locked pathway and inhibited export of early subunits in both native and early-locked pathways. These data indicate that the pathways for early and late subunits converge at the FliI ATPase, independent of ATP hydrolysis, before a distinct, separable sorting step. To ascertain the likely signals for sorting, the export of recombinant subunits was assayed. Late filament subunits unable to bind their chaperones were still sorted accurately, but chaperoned late subunits were directed through an early-locked pathway when fused to early subunit N-terminal export signal regions. Furthermore, while an early subunit signal directed export of a heterologous type III export substrate through both native and early-locked pathways, a late subunit signal only directed export via native pathways. These data suggest that subunits are distinguished not by late chaperones but by N-terminal export signals of the subunits themselves.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Chaperonas Moleculares/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , ATPases Translocadoras de Prótons/genética , Salmonella/metabolismo
16.
Proc Natl Acad Sci U S A ; 103(46): 17474-9, 2006 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17088562

RESUMO

Assembly of the bacterial flagellar filament requires a type III export pathway for ordered delivery of structural subunits from the cytosol to the cell surface. This is facilitated by transient interaction with chaperones that protect subunits and pilot them to dock at the membrane export ATPase complex. We reveal that the essential export protein FliJ has a novel chaperone escort function in the pathway, specifically recruiting unladen chaperones for the minor filament-class subunits of the filament cap and hook-filament junction substructures. FliJ did not recognize unchaperoned subunits or chaperone-subunit complexes, and it associated with the membrane ATPase complex, suggesting a function postdocking. Empty chaperones that were recruited by FliJ in vitro were efficiently captured from FliJ-chaperone complexes by cognate subunits. FliJ and subunit bound to the same region on the target chaperone, but the cognate subunit had a approximately 700-fold greater affinity for chaperone than did FliJ. The data show that FliJ recruits chaperones and transfers them to subunits, and indicate that this is driven by competition for a common binding site. This escort mechanism provides a means by which free export chaperones can be cycled after subunit release, establishing a new facet of the secretion process. As FliJ does not escort the chaperone for the major filament subunit, cycling may offer a mechanism for export selectivity and thus promote assembly of the junction and cap substructures required for initiation of flagellin polymerization.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Membrana Celular/metabolismo , Chaperonas Moleculares/genética , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA