Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(42): 23205-23213, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818771

RESUMO

An exceptional microsample from the ground layer of Leonardo da Vinci's Mona Lisa was analyzed by high-angular resolution synchrotron X-ray diffraction and micro Fourier transform infrared spectroscopy, revealing a singular mixture of strongly saponified oil with high lead content and a cerussite (PbCO3)-depleted lead white pigment. The most remarkable signature in the sample is the presence of plumbonacrite (Pb5(CO3)3O(OH)2), a rare compound that is stable only in an alkaline environment. Leonardo probably endeavored to prepare a thick paint suitable for covering the wooden panel of the Mona Lisa by treating the oil with a high load of lead II oxide, PbO. The review of Leonardo's manuscripts (original and latter translation) to track the mention of PbO gives ambiguous information. Conversely, the analysis of fragments from the Last Supper confirms that not only PbO was part of Leonardo's palette, through the detection of both litharge (α-PbO) and massicot (ß-PbO) but also plumbonacrite and shannonite (Pb2OCO3), the latter phase being detected for the first time in a historical painting.

2.
Angew Chem Int Ed Engl ; 58(17): 5619-5622, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30614602

RESUMO

Rembrandt (1606-1669) is renowned for his impasto technique, involving his use of lead white paint with outstanding rheological properties. This paint was obtained by combining lead white pigment (a mixture of cerussite PbCO3 and hydrocerussite Pb3 (CO3 )2 (OH)2 ) with an organic binding medium, but the exact formulation used by Rembrandt remains a mystery. A powerful combination of high-angle and high-lateral resolution x-ray diffraction was used to investigate several microscopic paint samples from four Rembrandt masterpieces. A rare lead compound, plumbonacrite (Pb5 (CO3 )3 O(OH)2 ), was detected in areas of impasto. This can be considered a fingerprint of Rembrandt's recipe and is evidence of the use of an alkaline binding medium, which sheds a new light on Rembrandt's pictorial technique.

3.
Microsc Microanal ; 17(5): 667-73, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21615981

RESUMO

A portable X-ray fluorescence/X-ray diffraction (XRF/XRD) system for artwork studies has been designed constructed and tested. It is based on Debye Scherrer XRD in reflection that takes advantage of many recent improvements in the handling of X-rays (polycapillary optics; advanced two-dimensional detection). The apparatus is based on a copper anode air cooled X-ray source, and the XRD analysis is performed on a 5-20 µm thick layer from the object surface. Energy dispersive XRF elemental analysis can be performed at the same point as XRD, giving elemental compositions that support the interpretation of XRD diagrams. XRF and XRD analyses were tested to explore the quality and the limits of the analytical technique. The XRD diagrams are comparable in quality with diagrams obtained with conventional laboratory equipment. The mineral identification of materials in artwork is routinely performed with the portable XRF-XRD system. Examples are given for ceramic glazes containing crystals and for paintings where the determination of pigments is still a challenge for nondestructive analysis. For instance, lead compounds that provide a variety of color pigments can be easily identified as well as a pigment such as lapis lazuli that is difficult to identify by XRF alone. More than 70 works of art have been studied in situ in museums, monuments, etc. In addition to ceramics and paintings, these works include bronzes, manuscripts, etc., which permit improvement in the comprehension of ancient artistic techniques.

4.
Sci Rep ; 10(1): 21715, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303851

RESUMO

Leonardo da Vinci (1452-1519) is a key artistic and scientific figure of the Renaissance. He is renowned for his science of art, taking advantage of his acute observations of nature to achieve striking pictorial results. This study describes the analysis of an exceptional sample from one of Leonardo's final masterpieces: The Virgin and Child with St. Anne (Musée du Louvre, Paris, France). The sample was analyzed at the microscale by synchrotron-based hyperspectral photoluminescence imaging and high-angular X-ray diffraction. The results demonstrate Leonardo's use of two subtypes of lead white pigment, thus revealing how he must have possessed a precise knowledge of his materials; carefully selecting them according to the aesthetical results he aimed at achieving in each painting. This work provides insights on how Leonardo obtained these grades of pigment and proposes new clues regarding the optical and/or working properties he may have tried to achieve.

5.
Sci Adv ; 6(18): eaay8782, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32494666

RESUMO

Ultramarine blue pigment, one of the most valued natural artist's pigments, historically was prepared from lapis lazuli rock following various treatments; however, little is understood about why or how to distinguish such a posteriori on paintings. X-ray absorption near-edge structure spectroscopy at the sulfur K-edge in microbeam and full-field modes (analyzed with nonnegative matrix factorization) is used to monitor the changes in the sulfur species within lazurite following one such historically relevant treatment: heating of lapis lazuli before extracting lazurite. Sulfur signatures in lazurite show dependence on the heat treatment of lapis lazuli from which it is derived. Peaks attributed to contributions from the trisulfur radical-responsible for the blue color of lazurite-increase in relative intensity with heat treatment paralleled by an intensified blue hue. Matching spectra were identified on lazurite particles from five historical paint samples, providing a marker for artists' pigments that had been extracted from heat-treated lapis lazuli.

6.
Materials (Basel) ; 10(11)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160862

RESUMO

In conservation, science semiconductors occur as the constituent matter of the so-called semiconductor pigments, produced following the Industrial Revolution and extensively used by modern painters. With recent research highlighting the occurrence of various degradation phenomena in semiconductor paints, it is clear that their detection by conventional optical fluorescence imaging and microscopy is limited by the complexity of historical painting materials. Here, we illustrate and prove the capabilities of time-resolved photoluminescence (TRPL) microscopy, equipped with both spectral and lifetime sensitivity at timescales ranging from nanoseconds to hundreds of microseconds, for the analysis of cross-sections of paint layers made of luminescent semiconductor pigments. The method is sensitive to heterogeneities within micro-samples and provides valuable information for the interpretation of the nature of the emissions in samples. A case study is presented on micro samples from a painting by Henri Matisse and serves to demonstrate how TRPL can be used to identify the semiconductor pigments zinc white and cadmium yellow, and to inform future investigations of the degradation of a cadmium yellow paint.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA