Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Acc Chem Res ; 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34350753

RESUMO

ConspectusAstatine (At) is the rarest on Earth of all naturally occurring elements, situated below iodine in the periodic table. While only short-lived isotopes (t1/2 ≤ 8.1 h) are known, 211At is the object of growing attention due to its emission of high-energy alpha particles. Such radiation is highly efficient to eradicate disseminated tumors, provided that the radionuclide is attached to a cancer-targeting molecule. The interest in applications of 211At in nuclear medicine translates into the increasing number of cyclotrons able to produce it. Yet, many challenges related to the minute amounts of available astatine are to be overcome in order to characterize its physical and chemical properties. This point is of paramount importance to develop synthetic strategies and solve the labeling instability in current approaches that limits the use of 211At-labeled radiopharmaceuticals. Despite its discovery in the 1940s, only the past decade has seen a significant rise in the understanding of astatine's basic chemical and radiochemical properties, thanks to the development of new analytical and computational tools.In this Account, we give a concise summary of recent advances in the determination of the physicochemical properties of astatine, putting in perspective the duality of this element which exhibits the characteristics both of a halogen and of a metal. Striking features were evidenced in the recent determination of its Pourbaix diagram such as the identification of stable cationic species, At+ and AtO+, contrasting with other halogens. Like metals, these species were shown to form complexes with anionic ligands and to exhibit a particular affinity for organic species bearing soft donor atoms. On the other hand, astatine shares many characteristics with other halogen elements. For instance, the At- species exists in water, but with the least range of EH-pH stability in the halogen series. Astatine can form molecular interactions through halogen bonding, and it was only recently identified as the strongest halogen-bond donor. This ability is nonetheless affected by relativistic effects, which translate to other peculiarities for this heavy element. For instance, the spin-orbit coupling boosts astatine's propensity to form charge-shift bonds, catching up with the behavior of the lightest halogens (fluorine, chlorine).All these new data have an impact on the development of radiolabeling strategies to turn 211At into radiopharmaceuticals. Inspired by the chemistry of iodine, the chemical approaches have sparsely evolved over the past decades and have long been limited to electrophilic halodemetalation reactions to form astatoaryl compounds. Conversely, recent developments have favored the use of the more stable At- species including the aromatic nucleophilic substitution with diaryliodonium salts or the copper-catalyzed halodeboronation of arylboron precursors. However, it is clear that new bonding modalities are necessary to improve the in vivo stability of 211At-labeled aryl compounds. The tools and data gathered over the past decade will contribute to instigate original strategies for overcoming the challenges offered by this enigmatic element. Alternatives to the C-At bond such as the B-At and the metal-At bonds are typical examples of exciting new axes of research.

2.
Chemistry ; 28(11): e202104169, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-34965315

RESUMO

Despite the growing interest in radioiodine and 211 At-labeled radiopharmaceuticals, the search for radiolabeling reactions has been somewhat neglected, resulting in a limited number of available radiosynthetic strategies. Herein we report a comparative study of nucleophilic 125 I and 211 At-labeling of aryliodonium ylides. Whereas radioiodination efficiency was low, 211 At-labeling performed efficiently on a broad scope of precursors. The most activated aryliodonium ylides led rapidly to quantitative reactions at room temperature in acetonitrile. For deactivated precursors, heating up to 90 °C in glyme and addition of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as radical scavenger appeared essential to avoid precursor degradation and to achieve high radiochemical yields and molar activity. The approach was applied successfully to the preparation of 4-[211 At]astatophenylalanine (4-APA), an amino acid derivative increasingly studied as radiotherapeutic drug for cancers. This validated aryliodonium ylides as a valuable tool for nucleophilic 211 At-labeling and will complement the short but now growing list of available astatination reactions.


Assuntos
Astato , Preparações Farmacêuticas , Astato/química , Radioisótopos do Iodo/química , Compostos Radiofarmacêuticos/química
3.
Molecules ; 25(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887456

RESUMO

Identified in 1973, somatostatin (SST) is a cyclic hormone peptide with a short biological half-life. Somatostatin receptors (SSTRs) are widely expressed in the whole body, with five subtypes described. The interaction between SST and its receptors leads to the internalization of the ligand-receptor complex and triggers different cellular signaling pathways. Interestingly, the expression of SSTRs is significantly enhanced in many solid tumors, especially gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). Thus, somatostatin analogs (SSAs) have been developed to improve the stability of the endogenous ligand and so extend its half-life. Radiolabeled analogs have been developed with several radioelements such as indium-111, technetium-99 m, and recently gallium-68, fluorine-18, and copper-64, to visualize the distribution of receptor overexpression in tumors. Internal metabolic radiotherapy is also used as a therapeutic strategy (e.g., using yttrium-90, lutetium-177, and actinium-225). With some radiopharmaceuticals now used in clinical practice, somatostatin analogs developed for imaging and therapy are an example of the concept of personalized medicine with a theranostic approach. Here, we review the development of these analogs, from the well-established and authorized ones to the most recently developed radiotracers, which have better pharmacokinetic properties and demonstrate increased efficacy and safety, as well as the search for new clinical indications.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Compostos Radiofarmacêuticos/química , Somatostatina/análogos & derivados , Somatostatina/uso terapêutico , Sequência de Aminoácidos , Animais , Humanos , Peptídeos/química , Receptores de Somatostatina/metabolismo , Somatostatina/agonistas , Somatostatina/antagonistas & inibidores , Distribuição Tecidual
4.
J Enzyme Inhib Med Chem ; 34(1): 773-782, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30843736

RESUMO

In this work, two bidentate 2-pyridyl-1,2,3-triazole ligands (3a and 3b) containing a 4-substituted benzenesulfonamide pharmacophore prepared by classical click chemistry procedures, as well as their corresponding rhenium complexes, 4a and 4b of general formula [ReCl(CO)3(L)] (L = 3a or 3b) were prepared and fully characterised by spectroscopic methods (IR, NMR, MS, UV-Vis), elemental analysis, X-ray diffraction, and theoretical studies using DFT and TD-DFT methods. In particular, we showed that, in the solid state, the pyridine and the triazole rings of 3b adopted an uncommon cis configuration which stems from intermolecular hydrogen bonds. Preliminary assays demonstrated a promising nanomolar inhibitory activity against carbonic anhydrase isoform IX for both ligands and complexes with a strong affinity Ki of 2.8 nM for ligand 3a. More interestingly, complex 4b exhibited a pronounced selectivity against hCA IX over the off-targets hCA I and hCA II which makes this compound a promising potential anticancer drug candidate.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica I/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Teoria da Densidade Funcional , Antígenos de Neoplasias/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/farmacologia , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Modelos Moleculares , Estrutura Molecular , Rênio/química , Rênio/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia , Triazóis/química , Triazóis/farmacologia , Benzenossulfonamidas
5.
EBioMedicine ; 105: 105202, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38905749

RESUMO

BACKGROUND: Glioblastoma (GB), the most aggressive brain cancer, remains a critical clinical challenge due to its resistance to conventional treatments. Here, we introduce a locoregional targeted-α-therapy (TAT) with the rat monoclonal antibody 9E7.4 targeting murine syndecan-1 (SDC1) coupled to the α-emitter radionuclide astatine-211 (211At-9E7.4). METHODS: We orthotopically transplanted 50,000 GL261 cells of murine GB into the right striatum of syngeneic female C57BL/6JRj mice using stereotaxis. After MRI validation of tumour presence at day 11, TAT was injected at the same coordinates. Biodistribution, efficacy, toxicity, local and systemic responses were assessed following application of this protocol. The 9E7.4 monoclonal antibody was labelled with iodine-125 (125I) for biodistribution and with astatine-211 (211At) for the other experiments. FINDINGS: The 211At-9E7.4 TAT demonstrated robust efficacy in reducing orthotopic tumours and achieved improved survival rates in the C57BL/6JRj model, reaching up to 70% with a minimal activity of 100 kBq. Targeting SDC1 ensured the cerebral retention of 211At over an optimal time window, enabling low-activity administration with a minimal toxicity profile. Moreover, TAT substantially reduced the occurrence of secondary tumours and provided resistance to new tumour development after contralateral rechallenge, mediated through the activation of central and effector memory T cells. INTERPRETATION: The locoregional 211At-9E7.4 TAT stands as one of the most efficient TAT across all preclinical GB models. This study validates SDC1 as a pertinent therapeutic target for GB and underscores 211At-9E7.4 TAT as a promising advancement to improve the treatment and quality of life for patients with GB. FUNDING: This work was funded by the French National Agency for Research (ANR) "France 2030 Investment Plan" Labex Iron [ANR-11-LABX-18-01], The SIRIC ILIAD [INCa-DGOS-INSERM-18011], the French program "Infrastructure d'Avenir en Biologie-Santé" (France Life Imaging) [ANR-11-INBS-0006], the PIA3 of the ANR, integrated to the "France 2030 Investment Plan" [ANR-21-RHUS-0012], and support from Inviscan SAS (Strasbourg, France). It was also related to: the ANR under the frame of EuroNanoMed III (project GLIOSILK) [ANR-19-ENM3-0003-01]; the "Région Pays-de-la-Loire" under the frame of the Target'In project; the "Ligue Nationale contre le Cancer" and the "Comité Départemental de Maine-et-Loire de la Ligue contre le Cancer" (CD49) under the frame of the FusTarG project and the "Tumour targeting, imaging and radio-therapies network" of the "Cancéropôle Grand-Ouest" (France). This work was also funded by the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Nantes, and the University of Angers.


Assuntos
Astato , Neoplasias Encefálicas , Glioblastoma , Sindecana-1 , Animais , Feminino , Camundongos , Sindecana-1/metabolismo , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Astato/uso terapêutico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Memória Imunológica , Modelos Animais de Doenças , Distribuição Tecidual , Humanos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Camundongos Endogâmicos C57BL , Ratos , Radioimunoterapia/métodos
6.
Pharmaceutics ; 13(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207408

RESUMO

Among all existing radionuclides, only a few are of interest for therapeutic applications and more specifically for targeted alpha therapy (TAT). From this selection, actinium-225, astatine-211, bismuth-212, bismuth-213, lead-212, radium-223, terbium-149 and thorium-227 are considered as the most suitable. Despite common general features, they all have their own physical characteristics that make them singular and so promising for TAT. These radionuclides were largely studied over the last two decades, leading to a better knowledge of their production process and chemical behavior, allowing for an increasing number of biological evaluations. The aim of this review is to summarize the main properties of these eight chosen radionuclides. An overview from their availability to the resulting clinical studies, by way of chemical design and preclinical studies is discussed.

7.
Cancers (Basel) ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971984

RESUMO

Despite therapeutic progress in recent years with the introduction of targeted therapies (daratumumab, elotuzumab), multiple myeloma remains an incurable cancer. The question is therefore to investigate the potential of targeted alpha therapy, combining an anti-CD138 antibody with astatine-211, to destroy the residual cells that cause relapses. A preclinical syngeneic mouse model, consisting of IV injection of 1 million of 5T33 cells in a KaLwRij C57/BL6 mouse, was treated 10 days later with an anti-mCD138 antibody, called 9E7.4, radiolabeled with astatine-211. Four activities of the 211At-9E7.4 radioimmunoconjugate were tested in two independent experiments: 370 kBq (n = 16), 555 kBq (n = 10), 740 kBq (n = 17) and 1100 kBq (n = 6). An isotype control was also tested at 555 kBq (n = 10). Biodistribution, survival rate, hematological parameters, enzymatic hepatic toxicity, histological examination and organ dosimetry were considered. The survival median of untreated mice was 45 days after engraftment. While the activity of 1100 kBq was highly toxic, the activity of 740 kBq offered the best efficacy with 65% of overall survival 150 days after the treatment with no evident sign of toxicity. This work demonstrates the pertinence of treating minimal residual disease of multiple myeloma with an anti-CD138 antibody coupled to astatine-211.

8.
Chem Sci ; 12(4): 1458-1468, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163909

RESUMO

Easy access to radioiodinated and 211At-labelled bio(macro)molecules is essential to develop new strategies in nuclear imaging and targeted radionuclide therapy of cancers. Yet, the labelling of complex molecules with heavy radiohalogens is often poorly effective due to the multiple steps and intermediate purifications needed. Herein, we investigate the potential of arylboron chemistry as an alternative approach for the late stage labelling of antibodies. The reactivity of a model precursor, 4-chlorobenzeneboronic acid (1) with nucleophilic iodine-125 and astatine-211 was at first investigated in aqueous conditions. In the presence of a copper(ii) catalyst and 1,10-phenanthroline, quantitative radiochemical yields (RCYs) were achieved within 30 minutes at room temperature. The optimum conditions were then applied to a CD138 targeting monoclonal antibody (mAb) that has previously been validated for imaging and therapy in a preclinical model of multiple myeloma. RCYs remained high (>80% for 125I-labelling and >95% for 211At-labelling), and the whole procedure led to increased specific activities within less time in comparison with previously reported methods. Biodistribution study in mice indicated that targeting properties of the radiolabelled mAb were well preserved, leading to a high tumour uptake in a CD138 expressing tumour model. The possibility of divergent synthesis from a common modified carrier protein demonstrated herein opens facilitated perspectives in radiotheranostic applications with the radioiodine/211At pairs. Overall, the possibility to develop radiolabelling kits offered by this procedure should facilitate its translation to clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA