Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Pathog ; 19(3): e1010843, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897927

RESUMO

The immunological surveillance factors controlling vulnerability of the female reproductive tract (FRT) to sexually transmitted viral infections are not well understood. Interferon-epsilon (IFNɛ) is a distinct, immunoregulatory type-I IFN that is constitutively expressed by FRT epithelium and is not induced by pathogens like other antiviral IFNs α, ß and λ. We show the necessity of IFNɛ for Zika Virus (ZIKV) protection by: increased susceptibility of IFNɛ-/- mice; their "rescue" by intravaginal recombinant IFNɛ treatment and blockade of protective endogenous IFNɛ by neutralising antibody. Complementary studies in human FRT cell lines showed IFNɛ had potent anti-ZIKV activity, associated with transcriptome responses similar to IFNλ but lacking the proinflammatory gene signature of IFNα. IFNɛ activated STAT1/2 pathways similar to IFNα and λ that were inhibited by ZIKV-encoded non-structural (NS) proteins, but not if IFNε exposure preceded infection. This scenario is provided by the constitutive expression of endogenous IFNε. However, the IFNɛ expression was not inhibited by ZIKV NS proteins despite their ability to antagonise the expression of IFNß or λ. Thus, the constitutive expression of IFNɛ provides cellular resistance to viral strategies of antagonism and maximises the antiviral activity of the FRT. These results show that the unique spatiotemporal properties of IFNε provides an innate immune surveillance network in the FRT that is a significant barrier to viral infection with important implications for prevention and therapy.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Camundongos , Antivirais/farmacologia , Genitália Feminina , Fatores Imunológicos , Interferon-alfa/farmacologia , Zika virus/genética
2.
J Virol ; 95(24): e0059621, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586867

RESUMO

Cellular factors have important roles in all facets of the flavivirus replication cycle. Deciphering viral-host protein interactions is essential for understanding the flavivirus life cycle as well as development of effective antiviral strategies. To uncover novel host factors that are co-opted by multiple flaviviruses, a CRISPR/Cas9 genome wide knockout (KO) screen was employed to identify genes required for replication of Zika virus (ZIKV). Receptor for Activated Protein C Kinase 1 (RACK1) was identified as a novel host factor required for ZIKV replication, which was confirmed via complementary experiments. Depletion of RACK1 via siRNA demonstrated that RACK1 is important for replication of a wide range of mosquito- and tick-borne flaviviruses, including West Nile Virus (WNV), Dengue Virus (DENV), Powassan Virus (POWV) and Langat Virus (LGTV) as well as the coronavirus SARS-CoV-2, but not for YFV, EBOV, VSV or HSV. Notably, flavivirus replication was only abrogated when RACK1 expression was dampened prior to infection. Utilising a non-replicative flavivirus model, we show altered morphology of viral replication factories and reduced formation of vesicle packets (VPs) in cells lacking RACK1 expression. In addition, RACK1 interacted with NS1 protein from multiple flaviviruses; a key protein for replication complex formation. Overall, these findings reveal RACK1's crucial role to the biogenesis of pan-flavivirus replication organelles. IMPORTANCE Cellular factors are critical in all facets of viral lifecycles, where overlapping interactions between the virus and host can be exploited as possible avenues for the development of antiviral therapeutics. Using a genome-wide CRISPR knockout screening approach to identify novel cellular factors important for flavivirus replication we identified RACK1 as a pro-viral host factor for both mosquito- and tick-borne flaviviruses in addition to SARS-CoV-2. Using an innovative flavivirus protein expression system, we demonstrate for the first time the impact of the loss of RACK1 on the formation of viral replication factories known as 'vesicle packets' (VPs). In addition, we show that RACK1 can interact with numerous flavivirus NS1 proteins as a potential mechanism by which VP formation can be induced by the former.


Assuntos
Sistemas CRISPR-Cas , Flavivirus/genética , Proteínas de Neoplasias/genética , Receptores de Quinase C Ativada/genética , Replicação Viral , Células A549 , Aedes , Animais , COVID-19 , Chlorocebus aethiops , Culicidae , Vírus da Dengue/genética , Estudo de Associação Genômica Ampla , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , SARS-CoV-2 , Células Vero , Vírus do Nilo Ocidental/genética , Zika virus/genética , Infecção por Zika virus/virologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32482672

RESUMO

Flaviviruses such as Zika virus (ZIKV), dengue virus (DENV), and West Nile virus (WNV) are major global pathogens for which safe and effective antiviral therapies are not currently available. To identify antiviral small molecules with well-characterized safety and bioavailability profiles, we screened a library of 2,907 approved drugs and pharmacologically active compounds for inhibitors of ZIKV infection using a high-throughput cell-based immunofluorescence assay. Interestingly, estrogen receptor modulators raloxifene hydrochloride and quinestrol were among 15 compounds that significantly inhibited ZIKV infection in repeat screens. Subsequent validation studies revealed that these drugs effectively inhibit ZIKV, DENV, and WNV (Kunjin strain) infection at low micromolar concentrations with minimal cytotoxicity in Huh-7.5 hepatoma cells and HTR-8 placental trophoblast cells. Since these cells lack detectable expression of estrogen receptors-α and -ß (ER-α and ER-ß) and similar antiviral effects were observed in the context of subgenomic DENV and ZIKV replicons, these compounds appear to inhibit viral RNA replication in a manner that is independent of their known effects on estrogen receptor signaling. Taken together, quinestrol, raloxifene hydrochloride, and structurally related analogues warrant further investigation as potential therapeutics for treatment of flavivirus infections.


Assuntos
Vírus da Dengue , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Vírus da Dengue/genética , Moduladores de Receptor Estrogênico , Feminino , Humanos , Placenta , Gravidez
4.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462563

RESUMO

The global health burden for hepatitis C virus (HCV) remains high, despite available effective treatments. To eliminate HCV, a prophylactic vaccine is needed. One major challenge in the development of a vaccine is the genetic diversity of the virus, with 7 major genotypes and many subtypes. A global vaccine must be effective against all HCV genotypes. Our previous data showed that the 1a E1/E2 glycoprotein vaccine component elicits broad cross-neutralizing antibodies in humans and animals. However, some variation is seen in the effectiveness of these antibodies to neutralize different HCV genotypes and isolates. Of interest was the differences in neutralizing activity against two closely related isolates of HCV genotype 2a, the J6 and JFH-1 strains. Using site-directed mutagenesis to generate chimeric viruses between the J6 and JFH-1 strains, we found that variant amino acids within the core E2 glycoprotein domain of these two HCV genotype 2a viruses do not influence isolate-specific neutralization. Further analysis revealed that the N-terminal hypervariable region 1 (HVR1) of the E2 protein determines the sensitivity of isolate-specific neutralization, and the HVR1 of the resistant J6 strain binds scavenger receptor class-B type-1 (SR-B1), while the sensitive JFH-1 strain does not. Our data provide new information on mechanisms of isolate-specific neutralization to facilitate the optimization of a much-needed HCV vaccine.IMPORTANCE A vaccine is still urgently needed to overcome the hepatitis C virus (HCV) epidemic. It is estimated that 1.75 million new HCV infections occur each year, many of which will go undiagnosed and untreated. Untreated HCV can lead to continued spread of the disease, progressive liver fibrosis, cirrhosis, and eventually, end-stage liver disease and/or hepatocellular carcinoma (HCC). Previously, our 1a E1/E2 glycoprotein vaccine was shown to elicit broadly cross-neutralizing antibodies; however, there remains variation in the effectiveness of these antibodies against different HCV genotypes. In this study, we investigated determinants of differential neutralization sensitivity between two highly related genotype 2a isolates, J6 and JFH-1. Our data indicate that the HVR1 region determines neutralization sensitivity to vaccine antisera through modulation of sensitivity to antibodies and interactions with SR-B1. Our results provide additional insight into optimizing a broadly neutralizing HCV vaccine.


Assuntos
Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/virologia , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Regiões Determinantes de Complementaridade/imunologia , Epitopos/imunologia , Genótipo , Hepacivirus/metabolismo , Hepatite C/metabolismo , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Humanos , Testes de Neutralização , Receptores Depuradores/genética , Receptores Depuradores Classe B/imunologia , Receptores Depuradores Classe B/metabolismo , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/metabolismo
6.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28956770

RESUMO

Dengue virus (DENV) is a major global pathogen that causes significant morbidity and mortality in tropical and subtropical areas worldwide. An improved understanding of the regions within the DENV genome and its encoded proteins that are required for the virus replication cycle will expedite the development of urgently required therapeutics and vaccines. We subjected an infectious DENV genome to unbiased insertional mutagenesis and used next-generation sequencing to identify sites that tolerate 15-nucleotide insertions during the virus replication cycle in hepatic cell culture. This revealed that the regions within capsid, NS1, and the 3' untranslated region were the most tolerant of insertions. In contrast, prM- and NS2A-encoding regions were largely intolerant of insertions. Notably, the multifunctional NS1 protein readily tolerated insertions in regions within the Wing, connector, and ß-ladder domains with minimal effects on viral RNA replication and infectious virus production. Using this information, we generated infectious reporter viruses, including a variant encoding the APEX2 electron microscopy tag in NS1 that uniquely enabled high-resolution imaging of its localization to the surface and interior of viral replication vesicles. In addition, we generated a tagged virus bearing an mScarlet fluorescent protein insertion in NS1 that, despite an impact on fitness, enabled live cell imaging of NS1 localization and traffic in infected cells. Overall, this genome-wide profile of DENV genome flexibility may be further dissected and exploited in reporter virus generation and antiviral strategies.IMPORTANCE Regions of genetic flexibility in viral genomes can be exploited in the generation of reporter virus tools and should arguably be avoided in antiviral drug and vaccine design. Here, we subjected the DENV genome to high-throughput insertional mutagenesis to identify regions of genetic flexibility and enable tagged reporter virus generation. In particular, the viral NS1 protein displayed remarkable tolerance of small insertions. This genetic flexibility enabled generation of several novel NS1-tagged reporter viruses, including an APEX2-tagged virus that we used in high-resolution imaging of NS1 localization in infected cells by electron microscopy. For the first time, this analysis revealed the localization of NS1 within viral replication factories known as "vesicle packets" (VPs), in addition to its acknowledged localization to the luminal surface of these VPs. Together, this genetic profile of DENV may be further refined and exploited in the identification of antiviral targets and the generation of reporter virus tools.


Assuntos
Vírus da Dengue/genética , Genoma Viral , Mutagênese Insercional , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Linhagem Celular , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Vírus da Dengue/fisiologia , Vírus da Dengue/ultraestrutura , Endonucleases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microscopia Eletrônica , Enzimas Multifuncionais , RNA Viral , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/ultraestrutura
7.
J Biol Chem ; 290(43): 25946-59, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26354436

RESUMO

The interferon-induced transmembrane (IFITM) family of proteins have recently been identified as important host effector molecules of the type I interferon response against viruses. IFITM1 has been identified as a potent antiviral effector against hepatitis C virus (HCV), whereas the related family members IFITM2 and IFITM3 have been described to have antiviral effects against a broad range of RNA viruses. Here, we demonstrate that IFITM2 and IFITM3 play an integral role in the interferon response against HCV and act at the level of late entry stages of HCV infection. We have established that in hepatocytes, IFITM2 and IFITM3 localize to the late and early endosomes, respectively, as well as the lysosome. Furthermore, we have demonstrated that S-palmitoylation of all three IFITM proteins is essential for anti-HCV activity, whereas the conserved tyrosine residue in the N-terminal domain of IFITM2 and IFITM3 plays a significant role in protein localization. However, this tyrosine was found to be dispensable for anti-HCV activity, with mutation of the tyrosine resulting in an IFITM1-like phenotype with the retention of anti-HCV activity and co-localization of IFITM2 and IFITM3 with CD81. In conclusion, we propose that the IFITM proteins act in a coordinated manner to restrict HCV infection by targeting the endocytosed HCV virion for lysosomal degradation and demonstrate that the actions of the IFITM proteins are indeed virus and cell-type specific.


Assuntos
Antígenos de Diferenciação/fisiologia , Hepacivirus/fisiologia , Fusão de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Ligação a RNA/fisiologia , Antígenos de Diferenciação/metabolismo , Linhagem Celular Tumoral , Endossomos/metabolismo , Hepatite C/fisiopatologia , Hepatócitos/metabolismo , Humanos , Lipoilação , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
J Gen Virol ; 97(8): 1877-1887, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27221318

RESUMO

The hepatitis C virus (HCV) RNA genome of 9.6 kb encodes only 10 proteins, and so is highly dependent on host hepatocyte factors to facilitate replication. We aimed to identify host factors involved in the egress of viral particles. By screening the supernatant of HCV-infected Huh7 cells using SILAC-based proteomics, we identified the transmembrane protein calsyntenin-1 as a factor specifically secreted by infected cells. Calsyntenin-1 has previously been shown to mediate transport of endosomes along microtubules in neurons, through interactions with kinesin light chain-1. Here we demonstrate for the first time, we believe, a similar role for calsyntenin-1 in Huh7 cells, mediating intracellular transport of endosomes. In HCV-infected cells we show that calsyntenin-1 contributes to the early stages of the viral replication cycle and the formation of the replication complex. Importantly, we demonstrate in our model that silencing calsyntenin-1 disrupts the viral replication cycle, confirming the reliance of HCV on this protein as a host factor. Characterizing the function of calsyntenin-1 will increase our understanding of the HCV replication cycle and pathogenesis, with potential application to other viruses sharing common pathways.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral , Linhagem Celular , Hepatócitos/virologia , Humanos
9.
J Virol ; 88(7): 3636-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24429364

RESUMO

UNLABELLED: Hepatitis C virus (HCV) NS5A is essential for viral genome replication within cytoplasmic replication complexes and virus assembly at the lipid droplet (LD) surface, although its definitive functions are poorly understood. We developed approaches to investigate NS5A dynamics during a productive infection. We report here that NS5A motility and efficient HCV RNA replication require the microtubule network and the cytoplasmic motor dynein and demonstrate that both motile and relatively static NS5A-positive foci are enriched with host factors VAP-A and Rab5A. Pulse-chase imaging revealed that newly synthesized NS5A foci are small and distinct from aged foci, while further studies using a unique dual fluorescently tagged infectious HCV chimera showed a relatively stable association of NS5A foci with core-capped LDs. These results reveal new details about the dynamics and maturation of NS5A and the nature of potential sites of convergence of HCV replication and assembly pathways. IMPORTANCE: Hepatitis C virus (HCV) is a major cause of serious liver disease worldwide. An improved understanding of the HCV replication cycle will enable development of novel and improved antiviral strategies. Here we have developed complementary fluorescent labeling and imaging approaches to investigate the localization, traffic and interactions of the HCV NS5A protein in living, virus-producing cells. These studies reveal new details as to the traffic, composition and biogenesis of NS5A foci and the nature of their association with putative sites of virus assembly.


Assuntos
Hepacivirus/imunologia , Proteínas não Estruturais Virais/análise , Montagem de Vírus , Replicação Viral , Linhagem Celular , Dineínas/metabolismo , Hepatócitos/química , Hepatócitos/virologia , Humanos , Microtúbulos/metabolismo , Proteínas de Transporte Vesicular/análise , Proteínas rab5 de Ligação ao GTP/análise
10.
Hepatology ; 58(5): 1558-68, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23703790

RESUMO

UNLABELLED: Host factors play an important role in all facets of the hepatitis C virus (HCV) life cycle and one such host factor is signal transducer and activator of transcription 3 (STAT3). The HCV core protein has been shown to directly interact with and activate STAT3, while oxidative stress generated during HCV replication in a replicon-based model also induced STAT3 activation. However, despite these findings the precise role of STAT3 in the HCV life cycle remains unknown. We have established that STAT3 is actively phosphorylated in the presence of replicating HCV. Furthermore, expression of a constitutively active form of STAT3 leads to marked increases in HCV replication, whereas, conversely, chemical inhibition and small interfering RNA (siRNA) knockdown of STAT3 leads to significant decreases in HCV RNA levels. This strongly implicates STAT3 as a proviral host factor. As STAT3 is a transcription factor, up-regulation of a distinct set of STAT3-dependent genes may create an environment that is favorable for HCV replication. However, STAT3 has recently been demonstrated to positively regulate microtubule (MT) dynamics, by way of a direct sequestration of the MT depolymerizing protein Stathmin 1 (STMN1), and we provide evidence that STAT3 may exert its effect on the HCV life cycle by way of positive regulation of MT dynamics. CONCLUSION: We have demonstrated that STAT3 plays a role in the life cycle of HCV and have clarified the role of STAT3 as a proviral host factor.


Assuntos
Hepacivirus/fisiologia , Fator de Transcrição STAT3/fisiologia , Carcinoma Hepatocelular/etiologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/etiologia , Microtúbulos/fisiologia , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Estatmina/fisiologia , Replicação Viral
11.
Microbiol Spectr ; 12(1): e0239123, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054722

RESUMO

IMPORTANCE: Dengue disease is characterized by an inflammatory-mediated immunopathology, with elevated levels of circulating factors including TNF-α and IL-6. If the damaging inflammatory pathways could be blocked without loss of antiviral responses or exacerbating viral replication, then this would be of potential therapeutic benefit. The study here has investigated the Vav guanine exchange factors as a potential alternative signaling pathway that may drive dengue virus (DENV)-induced inflammatory responses, with a focus on Vav1 and 2. While Vav proteins were positively associated with mRNA for inflammatory cytokines, blocking Vav signaling didn't affect DENV replication but prevented DENV-induction of p-ERK and enhanced IL-6 (inflammatory) and viperin (antiviral) mRNA. These initial data suggest that Vav proteins could be a target that does not compromise control of viral replication and should be investigated further for broader impact on host inflammatory responses, in settings such as antibody-dependent enhancement of infection and in different cell types.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Interleucina-6 , RNA Mensageiro , Replicação Viral , Antivirais
12.
Heliyon ; 10(11): e32334, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933949

RESUMO

Legionella is the causative agent of Legionnaires' disease, and its prevalence in potable water is a significant public health issue. Water stagnation within buildings increases the risk of Legionella. However, there are limited studies investigating how stagnation arising through intermittent usage affects Legionella proliferation and the studies that are available do not consider viable but non culturable (VBNC) Legionella. This study used a model plumbing system to examine how intermittent water stagnation affects both VBNC and culturable Legionella. The model plumbing system contained a water tank supplying two biofilm reactors. The model was initially left stagnant for ≈5 months (147 days), after which one reactor was flushed daily, and the other weekly. Biofilm coupons, and water samples were collected for analysis at days 0, 14 and 28. These samples were analysed for culturable and VBNC Legionella, free-living amoebae, and heterotrophic bacteria. After 28 days, once-a-day flushing significantly (p < 0.001) reduced the amount of biofilm-associated culturable Legionella (1.5 log10 reduction) compared with weekly flushing. However, higher counts of biofilm-associated VBNC Legionella (1 log10 higher) were recovered from the reactor with once-a-day flushing compared with weekly flushing. Likewise, once-a-day flushing increased the population of biofilm-associated Vermamoeba vermiformis (approximately 3 log10 higher) compared with weekly flushing, which indicated a positive relationship between VBNC Legionella and V. vermiformis. This is the first study to investigate the influence of stagnation on VBNC Legionella under environmental conditions. Overall, this study showed that a reduction in water stagnation decreased culturable Legionella but not VBNC Legionella.

13.
Viruses ; 15(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37243188

RESUMO

Dengue virus (DENV) non-structural protein 1 (NS1) is involved in multiple aspects of the DENV lifecycle. Importantly, it is secreted from infected cells as a hexameric lipoparticle that mediates vascular damage that is a hallmark of severe dengue. Although the secretion of NS1 is known to be important in DENV pathogenesis, the exact molecular features of NS1 that are required for its secretion from cells are not fully understood. In this study, we employed random point mutagenesis in the context of an NS1 expression vector encoding a C-terminal HiBiT luminescent peptide tag to identify residues within NS1 that are essential for its secretion. Using this approach, we identified 10 point mutations that corresponded with impaired NS1 secretion, with in silico analyses indicating that the majority of these mutations are located within the ß-ladder domain. Additional studies on two of these mutants, V220D and A248V, revealed that they prevented viral RNA replication, while studies using a DENV NS1-NS5 viral polyprotein expression system demonstrated that these mutations resulted in a more reticular NS1 localisation pattern and failure to detect mature NS1 at its predicted molecular weight by Western blotting using a conformation-specific monoclonal antibody. Together, these studies demonstrate that the combination of a luminescent peptide tagged NS1 expression system with random point mutagenesis enables rapid identification of mutations that alter NS1 secretion. Two such mutations identified via this approach revealed residues that are essential for correct NS1 processing or maturation and viral RNA replication.


Assuntos
Vírus da Dengue , Dengue , Humanos , Linhagem Celular , Replicação Viral , Western Blotting , Transporte Biológico , Proteínas não Estruturais Virais/metabolismo
14.
PLoS Pathog ; 6(10): e1001130, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20949066

RESUMO

Entry of hepatitis C virus (HCV) into hepatocytes is a multi-step process that involves a number of different host cell factors. Following initial engagement with glycosaminoglycans and the low-density lipoprotein receptor, it is thought that HCV entry proceeds via interactions with the tetraspanin CD81, scavenger receptor class B type I (SR-BI), and the tight-junction proteins claudin-1 (CLDN1) and occludin (OCLN), culminating in clathrin-dependent endocytosis of HCV particles and their pH-dependent fusion with endosomal membranes. Physiologically, SR-BI is the major receptor for high-density lipoproteins (HDL) in the liver, where its expression is primarily controlled at the post-transcriptional level by its interaction with the scaffold protein PDZK1. However, the importance of interaction with PDZK1 to the involvement of SR-BI in HCV entry is unclear. Here we demonstrate that stable shRNA-knockdown of PDZK1 expression in human hepatoma cells significantly reduces their susceptibility to HCV infection, and that this effect can be reversed by overexpression of full length PDZK1 but not the first PDZ domain of PDZK1 alone. Furthermore, we found that overexpression of a green fluorescent protein chimera of the cytoplasmic carboxy-terminus of SR-BI (amino acids 479-509) in Huh-7 cells resulted in its interaction with PDZK1 and a reduced susceptibility to HCV infection. In contrast a similar chimera lacking the final amino acid of SR-BI (amino acids 479-508) failed to interact with PDZK1 and did not inhibit HCV infection. Taken together these results indicate an indirect involvement of PDZK1 in HCV entry via its ability to interact with SR-BI and enhance its activity as an HCV entry factor.


Assuntos
Proteínas de Transporte/fisiologia , Hepacivirus/metabolismo , Hepacivirus/fisiologia , Receptores Depuradores Classe B/metabolismo , Internalização do Vírus , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Células Hep G2 , Hepacivirus/efeitos dos fármacos , Hepatite C/imunologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Proteínas de Membrana , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Transfecção , Internalização do Vírus/efeitos dos fármacos
15.
Hepatology ; 54(5): 1506-17, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22045669

RESUMO

UNLABELLED: The interferon-stimulated gene, viperin, has been shown to have antiviral activity against hepatitis C virus (HCV) in the context of the HCV replicon, although the molecular mechanisms responsible are not well understood. Here, we demonstrate that viperin plays an integral part in the ability of interferon to limit the replication of cell-culture-derived HCV (JFH-1) that accurately reflects the complete viral life cycle. Using confocal microscopy and fluorescence resonance energy transfer (FRET) analysis, we demonstrate that viperin localizes and interacts with HCV nonstructural protein 5A (NS5A) at the lipid-droplet (LD) interface. In addition, viperin also associates with NS5A and the proviral cellular factor, human vesicle-associated membrane protein-associated protein subtype A (VAP-A), at the HCV replication complex. The ability of viperin to limit HCV replication was dependent on residues within the C-terminus, as well as an N-terminal amphipathic helix. Removal of the amphipathic helix-redirected viperin from the cytosolic face of the endoplasmic reticulum and the LD to a homogenous cytoplasmic distribution, coinciding with a loss of antiviral effect. C-terminal viperin mutants still localized to the LD interface and replication complexes, but did not interact with NS5A proteins, as determined by FRET analysis. CONCLUSION: In conclusion, we propose that viperin interacts with NS5A and the host factor, VAP-A, to limit HCV replication at the replication complex. This highlights the complexity of the host control of viral replication by interferon-stimulated gene expression.


Assuntos
Hepacivirus/crescimento & desenvolvimento , Hepatite C Crônica/virologia , Proteínas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Hepacivirus/metabolismo , Humanos , Interferon-alfa/metabolismo , Neoplasias Hepáticas , Mutagênese/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/genética , RNA Interferente Pequeno/farmacologia , Proteínas de Transporte Vesicular/metabolismo
16.
Viruses ; 13(6)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071591

RESUMO

Several recently developed high-throughput techniques have changed the field of molecular virology. For example, proteomics studies reveal complete interactomes of a viral protein, genome-wide CRISPR knockout and activation screens probe the importance of every single human gene in aiding or fighting a virus, and ChIP-seq experiments reveal genome-wide epigenetic changes in response to infection. Deep mutational scanning is a relatively novel form of protein science which allows the in-depth functional analysis of every nucleotide within a viral gene or genome, revealing regions of importance, flexibility, and mutational potential. In this review, we discuss the application of this technique to RNA viruses including members of the Flaviviridae family, Influenza A Virus and Severe Acute Respiratory Syndrome Coronavirus 2. We also briefly discuss the reverse genetics systems which allow for analysis of viral replication cycles, next-generation sequencing technologies and the bioinformatics tools that facilitate this research.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutação/genética , Vírus de RNA/genética , Análise de Sequência de RNA , Biologia Computacional , Biblioteca Gênica , Genoma Viral/genética , Vírus de RNA/classificação , Vírus de RNA/fisiologia , Genética Reversa , Proteínas Virais/genética
17.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34108265

RESUMO

Peroxisomes are recognized as significant platforms for the activation of antiviral innate immunity where stimulation of the key adapter molecule mitochondrial antiviral signaling protein (MAVS) within the RIG-I like receptor (RLR) pathway culminates in the up-regulation of hundreds of ISGs, some of which drive augmentation of multiple innate sensing pathways. However, whether ISGs can augment peroxisome-driven RLR signaling is currently unknown. Using a proteomics-based screening approach, we identified Pex19 as a binding partner of the ISG viperin. Viperin colocalized with numerous peroxisomal proteins and its interaction with Pex19 was in close association with lipid droplets, another emerging innate signaling platform. Augmentation of the RLR pathway by viperin was lost when Pex19 expression was reduced. Expression of organelle-specific MAVS demonstrated that viperin requires both mitochondria and peroxisome MAVS for optimal induction of IFN-ß. These results suggest that viperin is required to enhance the antiviral cellular response with a possible role to position the peroxisome at the mitochondrial/MAM MAVS signaling synapse, furthering our understanding of the importance of multiple organelles driving the innate immune response against viral infection.


Assuntos
Proteínas de Membrana/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Peroxissomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antivirais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Imunidade Inata/imunologia , Imunidade Inata/fisiologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/fisiologia , Transdução de Sinais/genética
19.
Vaccines (Basel) ; 8(3)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937990

RESUMO

Zika Virus (ZIKV) and Dengue Virus (DENV) are related viruses of the Flavivirus genus that cause significant disease in humans. Existing control measures have been ineffective at curbing the increasing global incidence of infection for both viruses and they are therefore prime targets for new vaccination strategies. Type-I interferon (IFN) responses are important in clearing viral infection and for generating efficient adaptive immune responses towards infection and vaccination. However, ZIKV and DENV have evolved multiple molecular mechanisms to evade type-I IFN production. This review covers the molecular interactions, from detection to evasion, of these viruses with the type-I IFN response. Additionally, we discuss how this knowledge can be exploited to improve the design of new vaccine strategies.

20.
J Hepatol ; 51(3): 446-57, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19596477

RESUMO

BACKGROUND/AIMS: Co-infection with hepatitis B virus (HBV) and hepatitis C virus (HCV) increases the risk of development and the severity of chronic liver disease. Although dominant and suppressive effects of each virus over the other have been reported in vivo, in vitro studies of HBV/HCV co-infection have been limited to analysis of the effects of over-expression of HCV proteins on HBV replication. METHODS: We have re-examined HBV/HCV interactions in Huh-7 cells following co-infection with cell culture-propagated HCV (HCVcc; genotype 2a) and a recombinant adenovirus vector capable of delivering a replication-competent HBV genome (AdHBV; genotype A). RESULTS: While intracellular HCV RNA levels were significantly increased when cells were pre-infected with AdHBV, HCV replication and virion secretion were not altered by simultaneous infection with AdHBV or AdHBV superinfection of HCV-infected cells. Likewise intracellular and secreted HBV DNA levels and HBV promoter activities were either unchanged or modestly increased by HCVcc infection. Despite this, HCV E2 and HBsAg proteins colocalized extensively in co-infected cells suggesting shared stages in viral egress. CONCLUSIONS: These studies indicate that there is little direct interaction of HBV and HCV in co-infected hepatocytes and imply that indirect effects of host-viral interactions dictate viral dominance in HBV/HCV co-infected individuals.


Assuntos
Carcinoma Hepatocelular/virologia , Hepacivirus/fisiologia , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Neoplasias Hepáticas/virologia , Replicação Viral/fisiologia , Adenoviridae/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , DNA Viral/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Vetores Genéticos/genética , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite B/complicações , Hepatite B/fisiopatologia , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Hepatite C/complicações , Hepatite C/fisiopatologia , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA