Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 305(10): 2980-3001, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35202518

RESUMO

The lower jaw of early tetrapods is composed of several intramembranous ossifications. However, a tendency toward the independent reduction of the number of bones has been observed in the mandible of mammals, lepidosaurs, turtles, crocodiles, and birds. Regarding archosaurs, the coronoid and prearticular bones are interpreted to be lost during the evolution of stem-birds and stem-crocodiles, respectively, but the homology of the post-dentary bones retained in living pseudosuchians remains unclear. Here, we combine paleontological and embryological evidence to explore in detail the homology of the crocodylian post-dentary bones. We study the mandible embryogenesis on a sample of 71 embryos of Caiman and compare this pattern with the mandibular transformations observed across pseudosuchian evolution. In the pre-hatching ontogeny of caimans, at least five intramembranous ossification centers are formed along the margins of the internal mandibular fenestra (perifenestral centers) and, subsequently, merge to form the coronoid (three intramembranous centers), angular (one intramembranous center), and articular (one intramembranous and one chondral center). In the fossil record, an independent prearticular is lost around the base of Mesoeucrocodylia (optimized as reappearing in Thalattosuchia if they are placed within Neosuchia), and the coronoid is apomorphically lost in notosuchians. The integration of embryological and paleontological data indicates that most perifenestral centers are involved in the origin of the prearticular of non-mesoeucrocodylian pseudosuchians. These centers are rearranged during the evolution to contribute to different post-dentary bones in mesoeucrocodylians bolstering the idea that the coronoid and the articular of Crocodylia are not completely homologous to those of other diapsids.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Fósseis/anatomia & histologia , Mandíbula/anatomia & histologia , Jacarés e Crocodilos/embriologia , Animais , Evolução Biológica , Arcada Osseodentária/anatomia & histologia , Mandíbula/embriologia
2.
Sci Rep ; 9(1): 9379, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243312

RESUMO

Noasaurines form an enigmatic group of small-bodied predatory theropod dinosaurs known from the Late Cretaceous of Gondwana. They are relatively rare, with notable records in Argentina and Madagascar, and possible remains reported for Brazil, India, and continental Africa. In south-central Brazil, the deposits of the Bauru Basin have yielded a rich tetrapod fauna, which is concentrated in the Bauru Group. The mainly aeolian deposits of the Caiuá Group, on the contrary, bear a scarce fossil record composed only of lizards, turtles, and pterosaurs. Here, we describe the first dinosaur of the Caiuá Group, which also represents the best-preserved theropod of the entire Bauru Basin known to date. The recovered skeletal parts (vertebrae, girdles, limbs, and scarce cranial elements) show that the new taxon was just over 1 m long, with a unique anatomy among theropods. The shafts of its metatarsals II and IV are very lateromedially compressed, as are the blade-like ungual phalanges of the respective digits. This implies that the new taxon could have been functionally monodactyl, with a main central weight-bearing digit, flanked by neighbouring elements positioned very close to digit III or even held free of the ground. Such anatomical adaptation is formerly unrecorded among archosaurs, but has been previously inferred from footprints of the same stratigraphic unit that yielded the new dinosaur. A phylogenetic analysis nests the new taxon within the Noasaurinae clade, which is unresolved because of the multiple alternative positions that Noasaurus leali can acquire in the optimal trees. The exclusion of the latter form results in positioning the new dinosaur as the sister-taxon of the Argentinean Velocisaurus unicus.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Animais , Evolução Biológica , Brasil , Clima Desértico , Geografia , Geologia , Paleontologia , Filogenia , Crânio/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA